
Adiele & Ehikioya: Algebraic Signatures for Scalable Web Data Integration

 Page 56

ALGEBRAIC SIGNATURES FOR SCALABLE WEB DATA INTEGRATION FOR
ELECTRONIC COMMERCE TRANSACTIONS

Chima Adiele
Department of Computer Science

University of Manitoba
adiele@cs.umanitoba.ca

Sylvanus A. Ehikioya

Nigerian Communications Commission
Abuja, Nigeria

ehikioya@ncc.gov.ng

ABSTRACT

E-commerce transactions involve the access of data from enterprise-wide information. Providing enterprise-
wide information is becoming increasingly difficult because of problems inherent in identifying semantic equivalent
data. Web data integration consolidates and standardizes Web data, thus making Web data readily available to meet
e-commerce needs. Integrating data from different sources involves combining concepts and knowledge of such data
into a global view, so users can access such data without relying on the complex organizational structures of the
underlying data sources. Unfortunately, most existing efforts involve significant manual input and adopt ad hoc
approaches to data integration, ignoring the theoretical foundations of, and the necessary formalisms to specify, the
integration process. In this paper, we leverage algebraic signatures to specify components of the integration system.
We present an algebraic data model that reduces the topological structure of Web data sources to regular
expressions. We define algebraic operators and functions to manipulate objects in the algebraic model. Central to the
integration process is a filter mechanism that recognizes a “regulated schema” so that all the participating schemas
are guaranteed to be in the same format. We also show that our approach guarantees a scalable and correct
integration system.

Keywords: Web data integration, E-Commerce, Algebraic Signatures, Semistructured Data Model

1. Introduction

The Internet offers a virtual marketplace where buyers and sellers exchange goods and services. E-commerce
involves business activities that deal with the exchange of values for goods and services on the Internet where all
transactions are driven electronically. E-commerce, by nature, is a “self-service model” that allows the customer to
locate a merchant’s Web site, get product information, initiate product order and make payments. Locating products
or businesses on the Web is an important integral aspect of e-commerce transactions. Therefore, participants have to
contend with information overload on the Web, as it is the responsibility of the users to locate and interpret Web
data.

Regardless of the increasing volumes of e-commerce sites, e-commerce transactions come with some
challenges. Maamar (2003) identifies the following challenges that affect e-commerce operations: 1) The user has to
identify the relevant Web sites to access catalogs; 2) It is necessary for the user to understand how the Web sites
operate; 3) The user has to specify his / her needs according to the characteristics or terminology of the Web sites;
and 4) there is also security concerns in dealing with sensitive information, such as user’s account information. The
issue of secure e-commerce infrastructure has been extensively addressed in the literature [Bryant and Colledge,
2002; Evincible, 2003; Tygar, 1996; VeriSign, 2003]. However, data infrastructure (identifying, interpreting and
standard format) for e-commerce data on the Web is largely ignored. Web users, and in particular, e-commerce
actors desire an environment where data is transparent (but appears visible) to all the participants. Therefore, a
model that makes e-commerce data on the Web visible to all the actors is desirable. Web data integration provides a
framework to consolidate and standardize Web data, thus making Web data readily available. We present a scalable
integration system that is capable of integrating Web data sources. Our design philosophy hinges on three pivotal
components - suitable input, appropriate integration methodology and transparent integration output. We believe that

Journal of Electronic Commerce Research, VOL. 6, NO.1, 2005

 Page 57

applying appropriate integration methodology based on sound theoretical foundation to a set of well-formed input
schemas will generate the desired integration output that is transparent.

The model we propose leverages algebraic signatures with sound integration principles and algorithm to
guarantee scalability and correctness of the integration system. We define algebraic operators and functions to
manipulate objects in the algebraic model. Central to the integration process is a filter mechanism that recognizes a
“regulated schema” so that all the participating schemas are guaranteed to be in the same format. We show that the
process of recognizing a well-formed schema is decidable. Our model allows the autonomy of data sources, as every
data source is represented in a Del-G model. Del-G is an acyclic digraph that encapsulates in it structural
information of every object it represents. In our model, the integration methodology reduces to simple matching of
terms based on semantic names since every participating data source is translated to a regulated schema, and every
term in the local schemas is drawn from a common ontology. We design an efficient integration algorithm that
automates the integration process, thus freeing the user from the burden of understanding the intricacies of the
underlying data sources. We formally specify the integration components to reduce system’s complexity and provide
a clear understanding of the overall integration system. The main task involved in adding new sources is to ensure
that the local schemas are well formed. Therefore, the model we propose scales over multiple sources. Finally, the
output of the integration methodology is a transparent integration result called global integrated schema (GIS). The
GIS is a correct and transparent representation of the local schemas. This paper is significant in the following ways:
a) Formally specifying an integration model for e-commerce transactions provides a clear understanding of the

model, reveal ambiguities, incompleteness, and contradictions in the informal definition, and thus permit the
correctness verification of the integration components.

b) Algebraic signatures provide a formal foundation for establishing the correctness of the integration model. In
particular, the use of algebraic operators and functions to manipulate objects in the algebraic model, abstracts
away irrelevant portions of the informal definition, and emphasizes systems’ functionalities that precisely
specify the behaviour of the model.

c) Our integration algorithm automates the integration process. Automating the integration process removes the
burden of identifying and interpreting e-commerce data from the user.

d) Our model scales over multiple data sources because reducing the complexity of the integration process
enhances model’s scalability.
An algebraic signature is an implicit property-based formal framework that implicitly expresses operations by

their algebraic equivalences. Our interest is on what system’s operations are required to accomplish, rather than how
the task is to be carried out. We use set notations as in [Scheurer, 1994] to describe structural components, and
predicate logic to describe pre- and post-conditions for any requirement. Both the pre-conditions and post-conditions
are given as predicates. A simple predicate, which usually has one or more arguments, is of the form P(x), where x is
an argument that is used in the predicate P. A general form of a quantified statement can be written in one of the
following forms:

a) <quantifier><declaration(s)>●<predicate>
b) <quantifier><declaration(s)>|<constraint>●<predicate>

Two frequently used kinds of quantifiers are universal (∀) and existential (∃). The constraint is a condition that the
declaration must satisfy. The symbols "|" and "●" are part of the syntax, which mean "satisfying" and "such that",
respectively. To create compound predicates, statements can be nested and combined together using one or more
logical connectives, such as ∧ (and), ∨ (or), ¬ (not), ⇒ (conditional), and ⇔ (bi-conditional). Truth tables for the
logical connectives are available in most discrete mathematics textbooks. Other symbols used in this paper are
explained in context. A glossary of symbols is provided in Appendix A.

The remaining part of this paper is organized as follows. Section 2 examines related background materials and
integration challenges. Section 3 examines the need for a common ontology. A common ontology elucidates the
content and meaning of Web data to support the information needs of users of Web information. In Section 4, we
use algebraic signatures to represent a flexible semistructured data model, called Del-G. This representation
enhances the reduction of Del-G to regular expressions. Section 5 defines the integration process, thus bringing out
the basic components the integration process. We describe the input process, an important integral part of the
integration process in Section 6. We note that having a suitable input schema is a sine qua non to a successful Web
data integration. Therefore, we show that a well-formed input schema is recognizable and the process of recognizing
the schema is decidable. Section 7 discusses the integration mechanism and Section 8 examines the output process.
We also discuss our integration algorithm, and provide necessary formalisms for the integration process. Finally, we
conclude in Section 9, and provide insight into future work.

Adiele & Ehikioya: Algebraic Signatures for Scalable Web Data Integration

 Page 58

2. Background
Data integration is a problem that has attracted considerable attention from the research / industry communities.

Several academic prototypes and industrial integration systems have been developed to integrate data with tangential
success. We discuss a selection of these integration systems. Garlic [Haas et al, 1997; Haas et al, 1999] is a wrapper
/ mediator-based system, designed to address large information systems. Garlic derives its strength from powerful
wrappers and robust query processing mechanism capable of handling complex operations. In Garlic, the component
export schemas are tightly integrated within an object-oriented data model and the system optimizes and executes
queries over diverse data sources in an object-extended version SQL. Garlic ignores heterogeneity in schemas, but
handles differences in query capabilities using a flexible query optimizer. The Stanford-IBM Manager of Multiple
Information Sources (TSIMMIS) [Chawathe et al, 1994] focuses on the development of tools to facilitate integration
of heterogeneous information sources. The system propagates all schemas of the data sources’ wrappers to a global
view. TSIMMIS is a query-centric system that selects a set of queries and provides a procedure to answer each
query from the set of queries using available data sources. Queries on the global view are mapped into views or
queries on the data sources using query languages or logical rules. TSIMMIS does not believe on automation.

Industrial systems [Bukhres et al, 1993; Sheth and Karabatis, 1993] adopt a more ad hoc approach to
integration. Sheth and Karabatis (1993) describe a technique that is based on specifying dependencies among
databases so that the system can guarantee consistency among databases in a multi-database system. This approach
is amenable to industrial needs because custom coding, although costly and laborious, is relatively simple. It is also
relevant to the transaction management problem as many global transactions are carried out by consistency
enforcement. Global consistency of data sources is also the driving force behind InterBase [Bukhres et al, 1993].
InterBase uses a flexible transaction manager that ensures global consistency of data sources to provide a framework
for integrating different data sources. InterBase provides interfaces to the individual data sources for access data.
InterBase is an example of a practical system for industrial applications, despite the ad hoc integration approach that
depends on substantial manual input.

There are also domain specific efforts to standardize documents and messages for e-commerce applications
based on eXtensible Markup Language (XML). An Electronic Business using the eXtensible Markup Language
(ebXML) [W3C, 2002] is a domain-independent standardization effort that aims at developing a domain and
application-independent standard for exchanging business data. One problem of ebXML is that it provides only a
high-level specification of documents and messages (i.e. only tags and terminology is defined) but does not define
the structure of business documents. Such structure has to be defined by the business partners or by a particular
industry. BizTalk [Microsoft, 2000] allows data to be exchanged between systems using standardized XML
schemas. The Metadata Interchange Specification (MDIS) [Metadata, 1997], developed by a consortium of database
and software experts, is another emerging standard for specifying and exchanging metadata. The Electronic Data
Interchange for Administration, Commerce and Transport (EDIFACT)1 is a United Nations Economic Commission
for Europe (UNECE) initiative to specify syntax rules for the preparation of messages to be exchanged between
partners. EDIFACT has been used among big partners who set the standards for several years for B2B e-commerce.
A major problem with all these approaches is that they define schemas for data exchange. In particular, Fensel
(2001) notes that the EDIFACT standard is rather procedural and difficult, thus making the programming of
business transactions expensive, error prone, and laborious to maintain. Industry efforts, including BizTalk,
Standard Interchange Language (SIL) [Uniform, 1999], and Electronic Data Interchange (EDI) [Swatman and
Swatman, 1991; Chau, 2001], which use standardized structures and formats as a vehicle for information exchange
is not appealing because it lacks the needed flexibility to accommodate legacy systems and the corporate databases
of most enterprises are mainly in legacy systems.
2.1 Challenges of Integrating Heterogeneous Data Sources

The task of integrating data from heterogeneous data sources is difficult because of the differences in the
underlying data sources. Differences arise between different data sources because of conflicting representations of
two or more schemas. These differences arise because of the designers’ perception, different information needs, or
using different tools to express such perceptions. Indeed, two designers modeling the same problem space, or even
two overlapping spaces under consideration, may not necessarily describe the real world state (RWS) of objects2 in
the same way. Different authors [Batini et al, 1986; Lee et al, 1999; Sheth and Larson, 1990] have classified schema
heterogeneity in different ways at varying degrees, which sometimes coincide, overlap, or differ. We classify
schema heterogeneity into two broad groups – semantic and structural heterogeneity.

1 EDIFACT (Available at): http://www.unece.org/trade/untdid/welcome.htm
2 Larson et al. (1989) defined real world states of an object A, denoted RWS(A), as the set of instances of object A at

a given time.

Journal of Electronic Commerce Research, VOL. 6, NO.1, 2005

 Page 59

Semantic Heterogeneity - Semantic heterogeneity gives rise to naming conflicts. Naming conflicts may be a
problem of synonym where different concepts have the same name, or homonym where the same concept is given
different names. Naming conflicts may occur in a situation where data in different systems are given different
interpretations due to the designers’ different perceptions of the same set of real world objects. For instance, a
schema may have an “Employee” class, while another schema may have a more restricted “SD-Employee” class (a
group of employees in the sales department). Naming conflicts are resolved using a common ontology. A common
ontology eliminates multiple views of objects as every object in the ontology has a unique name, and objects with
the same name represent the same RWS.

Structural Heterogeneity - Structural heterogeneity refers to a situation where designers use different data
models (including structured, semistructured and unstructured data models), formats, and constructs to represent the
same real world objects. Subtypes of structural heterogeneity include behavioural heterogeneity, data model
heterogeneity, interschema properties, key conflicts, and data type heterogeneity. A detailed discussion of these
heterogeneities can be found in [Adiele, 2004].

Albeit, an efficient integration system is expected to resolve heterogeneities without user intervention, as the
way and manner an integration system resolves conflicts greatly enhances its applicability. A transparent integration
system insulates the user from the different data structures and organizational characteristics of the individual data
sources.

3. The Need for a Common Ontology

The Web offers an amalgamation of data from different domains to its multiple users, but fails to provide the
requisite environment for all actors to exchange information due to inconsistent behaviours amongst the participants
[Beneventano et al, 2004]. To resolve the problem of multiple understanding of real world state of objects among
numerous users of Web information, and enhance data sharability, the semantic content of data need to be made
explicit and represented. Ontology provides a framework for participants to speak a common language and hence
understand themselves. The need for increased automation of the integration process demands greater explicit
representation of the semantic content of local schemas. The adoption of a common standard is not new, as society
in general operates on common standards. For example, it be difficult to control traffic, and risky to drive on our
roads without appropriate road traffic regulations and standards. A common ontology facilitates the capture of the
intended meaning of local schemas. The adoption of a common ontology by all participating data sources enhances
interoperability without semantic ambiguities. The data sources also retain autonomy and display high degree of
flexibility because they are not tied to a particular data model. A formal definition of common ontology follows.

Definition 1. A common ontology (CO) is a finite set of terms, {τi}, organized in a hierarchical structure. Each term,
τi, is a conceptual label representing a semantic object. Formally,

CO ≘ {τi: ℙ1LABEL • ∀i, j: ℕi ≠ j • τi ≠ τj} (1)
A semantic object represents a data element together with its underlying contextual information, referred to as
semantic context. The semantic context is a combination of one or more objects drawn from the common ontology,
which could be a complex type, an atomic type, or a combination of both. The semantic object together with its
underlying structure describes the real world state of the object it represents. Semantic objects are organized
hierarchically so that adjacent complex objects are related by either IS-A or HAS-A relationships. We represent IS-
A relationship with a “,” and HAS-A relationship with a “;”. Formally,

SemObj ::= 〈CT〉;(AT)*
CT ::= 〈CT〉〈CT〉;(CT)*(CT)* (AT)+ (2)

Complex type (CT) represents complex objects, and atomic type (AT) represents atomic objects. We denote the
occurrence of an object zero or more times with “ * ” and the occurrence one or more times with “ + ”. A comma
delimits each occurrence of an object and shows IS-A relationship. It is mandatory for all participants in the
distributed system to accept the common ontology. The common ontology we adopt does not compromise data
model autonomy of participating data sources, as individual data sources only map elements from the data sources to
the common ontology.

4. Algebraic Data model

The dynamic and complex nature of Web data requires a flexible data model for its representation. We define a
simple algebraic data model, we call Del-G, which is a directed edge-labelled graph that encapsulates in it structural
information of every object it represents, where each edge is labelled with at most one context label (name). Del-G
represents data as a set of nodes and edges, similar to [Buneman et al. 1997; Papakonstantinou et al, 1995; Seo et al,
1997]. Simple data models have inherent advantage over complex models in data integration because the operations

Adiele & Ehikioya: Algebraic Signatures for Scalable Web Data Integration

 Page 60

to transform and merge data are correspondingly simpler in simple models [Batini et al, 1986]. Our model has the
following features:
1. A unique singleton node, called the root node;
2. Labels are on the edges;
3. The model contains at most one edge between two nodes; and
4. Every element is drawn from a common ontology.
5. Represents unknown elements.

We leverage Del-G’s simplicity and the expressive power provided by its features to achieve data integration.
4.1 Formal Foundation

A directed edge-labelled graph (Del-G) for an object is an acyclic digraph that encapsulates in it structural
information of every object it represents, where each edge is labelled with at most one context label (name). The
general terminology applicable to trees / graphs applies in their usual way (in this paper) to refer to relationships
between objects in a schema or databases. In particular, we use the following informal definitions to describe tree
concepts, where the elements u and v represent nodes, and e an edge.
• Child(u) returns the children (sub-elements) of u.
• Parent(u) returns the parent of the element u.
• Ancestors(u) returns the set ancestors of u.
• Descendants(u) returns the set of descendants of u.
• Siblings(u, v) is a boolean function that returns true if u and v have the same direct parent, otherwise it returns

false.
• NodeLabel(u) returns the label of a node u.
• EdgeLabel(e) returns the label of an edge e.
• Source(e) returns the source node of an edge e.
• Target(e) returns the target node of an edge e.

An edge in Del-G is a link between an ordered pair of nodes. Thus, ei = (u, v) represents an edge ei where the
Source(ei) = u and Target(ei) = v. The basic types [NODE, EDGE, LABEL] represent a node, edge, and label,
respectively. Let N : ℙ1 NODE; E: ℙ EDGE; and L: ℙ LABEL.

Figure 1 shows a generic representation of Del-G, which we now describe. Nodes r0, u1, u2, u3, v, w ∈ N
represent objects, and the pairs of nodes (r0, u1), (r0, u2), (r0, u3), (u2, v), and (u2, w) ∈ E are edges with the
corresponding labels e1, e2, e3, e4, and e5 ∈ L. Edges model the hierarchical relationship between ordered pairs of
objects, where in each pair, one is called source object and the other target object.

u 2

r 0

u 3u 1

C 4C 1
wv

e 2

e 3

e 4 e 5

C 2 C 3

e 1

Figure 1: A Representation of Del-G

A label is a string of characters that describes the object it represents. There is a unique singleton set called Root
⊆ N, whose only member is the unique node, called RootNode (r0). A node r0 ∈ Root is a root node if it has no
incoming edge such that Parent(r0) = ∅. The root node is traversed before any other node n in a pre-order traversal.
Edges with solid lines represent edges that show hierarchical relationships between objects, while edges with broken
lines are pseudo edges that associate either the entry-point label (λ) to r0 or terminal nodes to constant values, CV (Ci

∈ CV, where 1 ≤ i ≤ n). It would be necessary to differentiate between source object and target object of an ordered
pair of nodes in an edge. This reasoning is motivated in part by the fact that an edge embodies a hierarchical order
between objects. We formally define the functions Source and Target below.

λ

Journal of Electronic Commerce Research, VOL. 6, NO.1, 2005

 Page 61

Source, Target: EDGE → NODE (that is, Source : EDGE → NODE; Target: EDGE → NODE)
∀ei : EDGE • (∃u, v: NODE u ≠ v ∧ (u, v) = ei •

Source(ei) = u ∧ Target(ei) = v)
For example, in Figure 1, Source(e4) = u2 and Target(e4) = v. We define the function Parent to enhance the
hierarchical reference of objects. A node u is the parent of another node v, written Parent(v) = u, in Del-G if there
exists an edge ei such that u is the source node and v is the target node. The parent of a node is traversed before the
child node in a pre-order traversal. We give the definition of the function Parent.

Parent: NODE → NODE
∀u, v: NODE u ≠ v •

Parent(v) = u ⇒ ∃1 ei: EDGE •
Source(ei) = u ∧ Target(ei) = v

For example, in Figure 1, node u2 is the Parent(v). A node v is the Child of another node u, written Child(u) = v
in Del-G if the Parent(v) = u. We give the definition of the function Child.

Child: NODE → ℙNODE
∀u: NODE •

Child(u) = {v: NODE | Parent(v) = u}
We represent the set of non-terminal nodes as Complex-Node and the set of terminal nodes as Atomic-Node. A node
u ∈ Complex-Node has a child, while a node v ∈ Atomic-Node has no child.

Siblings(w, v) is a boolean function that returns true if w and v have the same direct parent, otherwise it returns
false. Formally,

Siblings : NODE → ℙNODE
∀u, v: NODE u ≠ v •

Siblings(u, v) = TRUE ⇔
∃w: NODE | (w ≠ u ∧ w ≠ v) • u, v ∈ Child(w)

4.2 The Del-G Model
In Del-G, every edge is associated with a label. Recall, an edge is an ordered pair of nodes, which represent

objects, and every object has a label given by the function:
NodeLabels: NODE → LABEL

To synchronize the label of an object with the formalism of Del-G, we associate the label of an edge to the Target.
We give the signature and definition of a labelling function, EdgeLabels that maps every edge to a label.

EdgeLabel: EDGE → LABEL
∀e: Edge ∃l: LABEL ∧

EdgeLabel(e) = l ⇔ NodeLabel(Target(e)) = l

Definition 2. A Del-G is a 4-tuple (N, E, L, CO) where:
1. N is a finite nonempty set of nodes.
2. E is a set of edges; and ∀e: E • ∃u, v: NODE u ≠ v •

Source(e) = u ∧ Target(e) = v.
3. L is a set of labels; and ∀e: EDGE • ∃1 l: L l ∈ CO • EdgeLabel(e) = l.
4. CO is the common ontology.

Point 1 specifies that N is a finite nonempty set of nodes that represent objects. By the inheritance property of
objects, a node inherits the structural information of the object it represents. Point 2 specifies E as a set edges, and
an edge as an ordered pair of nodes (u, v), where u is the source and v is the target. Point 3 specifies L as a set of
labels such that every label is drawn from CO, and every edge has at most one label. Point 4 specifies that CO is a
common ontology.

The schema of an object is a set of nodes that describes the structure of the object in Del-G. The Del-G model is
defined with its unique syntax and its associated semantics. The syntax is derived from the structure of Del-G and
the objects. The semantics of the model shows the inherent relationships (including parent, child, ancestor,
descendant, etc.) that exist between objects. Let CV denote the set of constant values that represent the values of
objects. Val maps terminal nodes in Atomic-Node to CV. A formal definition of the schema of an object follows.

Definition 3. The Schema of an object S = (ϕ, r0, λ, Val) is a Del-G where:
1. ϕ = U (Root, Complex-Node, Atomic-Node) ⊆ N |

Adiele & Ehikioya: Algebraic Signatures for Scalable Web Data Integration

 Page 62

I(Root, Complex-Node, Atomic-Node) = ∅;

2. r0 ∈ Root is a special node in Del-G, called the root node;
3. λ: LABEL is a special label called the entry point label; and
4. Val: N → N × CV.

A Schema also satisfies the following conditions:
a) terminal nodes have no outgoing edges;
b) the root node has no incoming edge, but every schema has an entry point label that is associated with the root

node; and
c) each node n is reachable from the root node r0 and its label, λ.

Let SCHEMA be the basic type of a schema. A formal specification of a schema follows.

∀S: SCHEMA • S = (ϕ, r0, λ, Val) ⇔
ϕ = U (Root, Complex-Node, Atomic-Node) (3)

I (Root, Complex-Node, Atomic-Node) = ∅ ∧ ∃r0: Root • NodeLabel(r0) = λ ∧

∀e: EDGE • (∃u, v: NODE u ≠ v ∧ u, v ∈ ϕ • Source(e) = u ∧ Target(e) = v) ∧
(∃l: LABEL • EdgeLabel(e) = l) ∧

Val(Target(e)) ∈ CV ⇔ Target(e) ∈ Atomic-Node)))

Example 1. We show in Figure 2 an example of a Del-G schema with information about authors of books.
Author [Name, Birthday, Book [Title, ISBN]]

01
0 4

r0

0 5

02 03

A u th o r

B o o k

N am e

B irth d ay

T itle IS B N

Figure 2: Graphical Representation of Semistructured Data in Del-G

Author is the entry-point label associated with the object being described, and its value is a sequence of sub-objects
enclosed in the square bracket. These sub-objects may include atomic objects as in [Name] or complex objects as in
[Book [Title, ISBN]], and the values of atomic objects are drawn from the set of constant values CV.

A semistructured data contains the sequences of labels along the paths that can be found in the edge-graph. In
the above representation, the entry point label “Author” is associated with the root node r0; (01) ∈ Complex-Node,
while (02, 03, 04, 05) ∈ Atomic-Node. Additional functions and terminologies are defined in context.

In the Del-G model, as in OEM, labels are first class citizens, and are used in place of a schema. However,
unlike OEM, we attach labels on the edges instead of the nodes to exploit path knowledge. Path knowledge is
important to successful access of semistructured data. This model, like OEM, is self-describing, and has no a priori
schema. One major improvement Del-G over the other models [Buneman et al, 1997; Papakonstantinou et al, 1995;
Seo et al, 1997] is that the user is not saddled with the responsibility of identifying and interpreting the objects since
every object must come from a common ontology. To avoid repeatedly traversing sub-graphs due to multiple edges
between two nodes, we assume that Del-G contains at most one edge between two nodes. There is a natural
recursive ancestral relationship that creates the notion of path knowledge, and hence enhances the quality of queries
posed. The Del-G model mimics the simplicity of OEM, which is flexible for semistructured data, yet powerful
enough to represent other models and enhance integration. Therefore, the model is able to provide information
exchange among organizations, since it could represent every other model.

Journal of Electronic Commerce Research, VOL. 6, NO.1, 2005

 Page 63

5. The Integration Process
The integration process addresses data integration challenges by leveraging the common ontology and

semistructured data model to map elements from the local schemas to the global integrated schema. Given two local
schemas as input, where elements from the schemas are drawn from the common ontology and represented with
Del-G model, the integration process generates a global integrated schema as output. An integral part of the process
is an integration algorithm that automatically identifies assertions, determines attribute relationships, and generates
correspondence rules without the costly user intervention. Therefore, the major task in this phase is to dynamically
resolve heterogeneities that exist between local schemas with a view to producing a global integrated schema that
guarantees data transparency across data sources. A formal definition of the integration process follows.

Definition 4. The integration process is a 4-tupple (SLS, CO, ϒGIS, GIS) where:
1. S1, S2 ∈ SLS are local schemas to be integrated such that every element in S1 and S2 is drawn from the common

ontology CO. S1 and S2 are the input to the systems, and it is required that the input be presented in the right
format.

2. CO is a common ontology that provides standardization for the terms used;
3. ϒGIS is an integration generation function (ϒGIS) that generates the GIS from the local schemas using

correspondence assertions and correspondence rules. ϒGIS is an integral part of the integration methodology that
processes a given input to generate the desired output.

4. GIS is the global integrated schema over all the local schemas. The GIS is the output of the integration process.
The above definition presents the local schemas S1, S2 ∈ SLS as input to the integration process. Elements from

the local schemas are mapped to the common ontology to ensure that elements with the same semantic names
actually represent the same real world state. In addition, all the input schemas is represented with the Del-G model
so that they can communicate uniformly. The system we model allows autonomy of user input, and therefore
requires that all local schemas must be guaranteed to be in the same format. The main task of the input process is to
present all the participating local schemas in the same format. One of the ways to ensure that all the participating
local schemas are in the same format is to provide a theoretical framework that supports such claims. Providing this
theoretical framework is vital to guarantee a “suitable input”. A suitable integration methodology allows a measure
of autonomy. Therefore, the task of the integration methodology is to design an algorithm that automatically
integrates the local schemas into GIS. Finally, the required output, the GIS should correctly represent all the local
schemas. In the sections that follow we discuss components of the integration process in detail and provide the
necessary formalisms.

6. Input Process

We adopt a two-phase integration strategy. In Phase 1, our primary concern is to present the input schemas in a
platform independent format and eliminate multiple views of objects. The aim of the first phase is to ensure that all
participating data sources are represented with a Del-G schema. Determining the “well-formedness” of a given local
schema is crucial to the integration mechanism. In particular, Sheth and Larson (1990) observe that “unless the
schemas are represented in the same model, analyzing and comparing their schema objects is extremely difficult.”
Central to the integration process is a filter mechanism that recognizes a “regulated schema” so that all the
participating schemas are guaranteed to be in the same format. We, therefore, provide a theoretical foundation to
show that the filter mechanism is capable of identifying regulated schemas in a finite number of steps.

 First, we give the following definitions to simplify our exposition. We define a regular expression in the
context of a Del-G schema to enable us establish the fact that an FSA accepts a well-formed Schema.

Definition 5. A regular expression R over the alphabet ∑ ∑ ⊆ CO is defined as follows:
i) ε, is a regular expression;
ii) a a ∈ ∑ is a regular expression;
iii) if R1 and R2 are regular expressions, then (R1 ∪ R2) is a regular expression;
iv) if R1 and R2 are regular expressions, then (R1.R2) is a regular expression;
v) if R1 is a regular expression, then (R1

*) is a regular expression;
vi) no expression is a regular expression unless it is obtained from (i) – (v).

Let L(R) be the language associated with the regular expression, R, over the alphabet, ∑. Then L(R) ⊆ ∑* ⊧
L(R) ⊆ CO. We recursively define L(R) as follows:
a) L(ε) = {ε};
b) if a ∈ ∑, then L(a) = {a};
c) L(R1 ∪ R2) = L(R1) ∪ L(R2);

Adiele & Ehikioya: Algebraic Signatures for Scalable Web Data Integration

 Page 64

d) L(R1.R2) = L(R1).L(R2);
e) L(R1

) = L(R1);
where L* is the reflexive and transitive closure of the language L.

Definition 6. A Path-Label (pl) in Del-G is a sequence of labels (λ. l1. … . ln) ⊆ CO of a path, each delimited by a
period, such that λ is the entry point label, and the labels li correspond to edges ei (1 ≤ i ≤ n), and Target(en) ∈
Atomic-Node. The pseudo edge, e0, is associated with the entry-point label λ.

Definition 7. A Data-Path (dp) in Del-G is an alternating sequence of labels on edges, and nodes delimited by
periods of the form (λr0.l1o1. …. lnon), such that a path of n edges (e1.e2. …. en) could be traversed in a predefined
order through (n +1) nodes (r0.o1. … on). In addition, every dp in Del-G satisfies the following conditions.
1. λ is the entry point label.
2. l1 is the label of edge e1 such that Source(e1) = r0 and Target(e1) = o1.
3. ln is the label of edge en such that Source(en) = on-1 and Target(en) = on ∧ on ∈ Atomic-Node.

The basic types [PATH-LABEL, DATA-PATH] represent a path label and a data path, respectively. The
following constraints hold for path label and data path.

∀pli, plj: PATH-LABEL • i ≠ j ⇒ pli ≠ plj (4)
∀dpi, dpj: DATA-PATH • i ≠ j ⇒ dpi ≠ dpj

Example 2. To illustrate our definitions we consider the schema of a Del-G object O represented in Figure 2. For
example, (Author.r0.Book.01.Title.02) is a data path of the schema of Figure 2, where the edges labeled (Author,
Book, Title) could be traversed through the nodes (r0, 01, 02), and “Author” is the entry point label. “Book” is the
label of edge e1 such that Source(e1) = r0 and Target(e1) = 01. “Title” is the label of edge en such that Source(en) = 01

and Target(en) = 03 ∧ 03 ∈ Atomic-Node. The data paths and corresponding path labels is given in Table 1.

Table 1: Data Paths and Path Labels of Figure 2

The Del-G of Figure 2 can be completely represented by the union of Data-Paths, U
n

i 1=

dpi. A k-dp Del-G is a Del-G

where the cardinality of the set Atomic-Node = k. A k-dp Del-G can be constructed by concatenating a set of k data
paths {dp1, dp2, …, dpk} that are not prefix of each other. Notice that for every unique Data-Path dpi there exists a
corresponding unique Path-Label pli. Therefore, we can represent a Del-G structure with Path-Labels, which are
regular expressions. Next, we define a well-formed schema in the context of regular expressions.

Definition 8. A well-formed Schema, SWf, for the schema of an object O is a 4-tuple (Xn, Xl, PL, DP) where
1. Xn is a finite set of nodes;
2. Xl is a set of labels;
3. PL is a set of path labels pli;
4. DP is a set of data paths dpi.

In addition, SWf satisfies the following conditions.
a) for each regular expression (pli ∈ PL) there exists some edge labels in Xl that instantiate the variables of SWf;
b) for each data path (dpi ∈ DP), there exist some sequence(s) of nodes and edges in SWf such that each sequence is

in the language L(dpi);
c) every node (excluding the root node) has at most one parent. Parent(r0) = ∅;
d) no two siblings in SWf are the same.

A formal definition of conditions c) and d) follows.

∀v: NODE • (∃S: SCHEMA ∧ ∃u, w: NODE u, w ∈ S •
(Parent(v) = u ∧ Parent(v) = w ⇒ u = w) ∧ (5)

∀a, b: NODE a ≠ b ∧ Siblings(a, b) • (∃li, lj : LABEL •
NodeLabel(a) = li ∧ NodeLabel(b) = lj ⇒ li ≠ lj)

Data paths Corresponding Path Labels
dp1 = Author.r0.Book.01.Title.02 pl1 = Author.Book.Title
dp2 = Author.r0.Book.01.ISBN.03 pl2 = Author.Book.ISBN
dp3 = Author.r0.Name.04 pl3 = Author.Name
dp4 = Author.r0.Birthday.05 pl4 = Author.Birthday

Journal of Electronic Commerce Research, VOL. 6, NO.1, 2005

 Page 65

A path label pli connects labeled edges to nodes in the form: ba pli→ where a, b ∈ Xn and pli is a regular
expression over Xl.

Definition 9. A regulated schema for an object O is a well-formed schema such that (∀l : LABEL l ∈ CO • (∃e
:EDGE • EdgeLabel(e) = l)).

Definition 10. A filter mechanism is an accepting device, which either accepts a local schema if it satisfies the
accepting conditions, or rejects otherwise. The accepting conditions are as follows:
1. Every local schema must have an entry point label that is associated with the root node.
2. Every element in the local schema (excluding the root) has at most one parent.
3. Every name (label) in the local schema is also in the common ontology (CO). If a term A1 from the local

schema is not in CO, but Parent(A1) is in CO, then A1 will be added to the CO.
4. The entry point label of every object must be in CO.
If these conditions are satisfied, the filter mechanism accepts the local schema, and the accepted local schema then
becomes a regulated schema. The “filter mechanism” parses the regulated schema with its associated metadata and
mappings. Metadata information includes translation rules from local schema to regulated schema, mappings from
local names to ontology names, and systems constraints. Accept is a boolean function that accepts a local schema as
a regulated schema. The definition of the function Accept follows.

Accept: SCHEMA
∀S: SCHEMA • ∃CO: ℙLABEL •

Accept(S) ⇔ (∃r0: Root r0 ∈ S ∧ (6)
∃λ: LABEL λ = NodeLabel(r0) ∧ λ ∈ CO •
∀v: NODE v ∈ S • (∃1u: NODE (u ≠ v ∧ u ∈ S) • Parent(v) = u) ∧
∀li : LABEL li ∈ S • (∃lj : LABEL lj ∈ CO • li = lj) ∨
∀li ∈ S (li ≠ λ ∧ li ∉ CO) • Parent(li) ∈ CO ⇒

Insert(li) • li ∈ CO)
We give the signature of a function Insert that inserts a term (name) in CO; Insert: LABEL → LABEL.

Recall a filter mechanism that accepts a regulated schema is an accepting device. This implies that it is possible
to construct a finite state automaton that accepts a regulated schema since it is known [Sipser, 1997] that a finite
state automaton can act as an accepting device under certain conditions. First we define a finite state automaton for
SWf.

Definition 11. A finite state automaton (FSA) for a well-formed schema SWf is a 5-tuple (Q, ∑, δ, q0, F) where
1. Q Q : NODE is a finite set of states;
2. ∑ ∑: LABEL ∧ ∑ ⊆ CO is a finite set of alphabets;
3. δ: Q × ∑ → Q is a transition function;
4. q0 ∈ Q q0 ∈ Root is a start state
5. F ⊆ Q F ⊆ Atomic-Node is the set of final states (accepting states).

Juxtaposing Definition 11 with Definition 10, we make the following deductions that facilitate the construction
of a FSA from a well-formed schema.
a) Point 1 in Definition 8 defines the start state.
b) Point 2 specifies that the finite state automaton is deterministic.
c) Point 3 defines a finite set of alphabets, ∑.
d) Point 4 states that λ ∈ ∑.

Theorem 1. There exists a finite state automaton that accepts a well-formed Schema, SWf.
Proof. To simplify our proof, we assume without loss of generality that ∑ ⊆ CO = {a, b}, and L is a regular

language over ∑. Let R be a regular expression associated with L. But, a well-formed Schema, SWf, in Del-G is
completely represented by a set of data paths DP, and for each data path dpi, there is a corresponding Path-
Label, plj, such that plj uniquely connects the root node, r0, to a given node u, where u ∈ Atomic-Node. The
proof follows the inductive definition of regular expressions.

Base Case. Suppose R is either ε, a, or b, then, L is either {ε}, {a}, or {b}. In this case, L is FSA-acceptable because
it is finite. Observe that we can have a Del-G represented with only one node, r0, and the entry-point label, λ
(where λ = ε, a, or b), such that dpi = λ.r0 and plj = λ.

Adiele & Ehikioya: Algebraic Signatures for Scalable Web Data Integration

 Page 66

 Inductive Case. Suppose R is of the form (R1 ∪ R2), where R1 and R2 are regular expressions, then both L(R1) and
L(R2) are regular and are acceptable by an FSA. But, L(R1 ∪ R2) = L(R1) ∪ L(R2), so L(R1 ∪ R2) is acceptable by
an FSA.
Suppose R is of the form (R1.R2), where R1and R2 are regular expressions, then both L(R1) and L(R2) are regular
languages and are acceptable by an FSA. But, L(R1.R2) = L(R1).L(R2), so L(R1).L(R2) is acceptable by an FSA.
Finally, suppose R is of the form (R1

*), where R1 is a regular expression, then L(R1) is regular by definition and
are acceptable by an FSA. But, L(R1

*) = L*R1, so L(R1
*) is acceptable by an FSA.

Example 3. To illustrate the proof of Theorem 1, we construct an FSA for the Del-G schema of Figure 2.

r0

05

04

03

02
01

Name

Book

Birthday

Title

ISBN

Author

Figure 3: Finite State Automaton (FSA) of a Del-G Schema

Figure 3(a) shows the state diagram of the Del-G schema of Figure 2. It has six states each representing a node in the
Del-G schema. When the automaton receives the Del-G represented as a set data paths DP, it processes each data
path dpi and produces an output. The output is either “accept” or “reject”. The automaton rejects the entire data
paths if any data path dpi ∈ DP is rejected. Recall that there exists a pseudo edge, e0, pointing from nowhere to the
root node r0 in a Del-G schema. This pseudo edge for Example 2 is associated with the entry-point label, “Author”.
Notice that a pseudo arrow pointing from nowhere to a state, r0, in Figure 3(a) indicates the start state. We attach the
entry-point label, “Author” to this pseudo arrow. Figure 3(b) represents the transition function (δ) for the FSA of
Figure 3(a).
Let M = (Q, ∑, δ, r0, F), where
1. Q = {r0, 01, 02, 03, 04, 05};
2. ∑ = {Book, Title, ISBN, Name, Birthday};
3. δ is described as shown in Figure 3(b);
4. r0 ∈ Q is the start state; and
5. F = {02, 03, 04, 05} ⊆ Q.

If A is the set of all strings that machine M accepts, we say that A is the language of machine M and write L(M)
= A. We say that M accepts A. From Theorem 1, we deduce that the filter mechanism accepts a regulated schema.
Another interesting task is to determine whether the filter mechanism accepts a regulated schema in a finite number
of computational steps. That is, can the filter mechanism decide if an input schema is a well-formed schema?
Theorem 2 answers this question. To answer this question, we define a Turing machine, M, in the context of a Del-G
schema.

Definition 12. A Turing machine is a 7-tuple, (Q, ∑, Γ, δ, q0, qaccept, qreject), where Q, ∑, Γ are finite sets, and
1. Q Q: NODE is the set of states,
2. ∑ ∑: LABEL ∧ ∑ ⊆ CO is the input alphabet not containing the special blank symbol ⊔,
3. Γ is the tape alphabet, where ⊔ ∈ Γ and ∑ ⊂ Γ,
4. δ: Q × Γ → Q × Γ × {L, R}is the transition function,
5. q0 q0 ∈ Root ∧ Root ⊆ Q is a start state,
6. qaccept qaccept ∈ Atomic-Node ∧ Atomic-Node ⊆ Q is the accept state, and
7. qreject qreject ∉ Atomic-Node is the reject state, where qaccept ≠ qreject.

A Turing machine gives a precise definition of an algorithm or a mechanical procedure. It is a simple machine
that can decide if a computational problem is solvable in a finite number of steps.

 Book Title ISBN Name Birthday

r0 01 04 05

01 02 03

02

03

04

05

(a) (b)

Journal of Electronic Commerce Research, VOL. 6, NO.1, 2005

 Page 67

Theorem 2. The process of recognizing a well-formed schema by the filter mechanism is decidable.
Proof Idea. Recall from Theorem 1 that an FSA accepts SWf. Also, from (Definition 10), it can be deduced that a

filter mechanism can be represented as a deterministic finite state automaton. The problem reduces to: given an
SWf to find a Turing machine, TM M, that accepts it in a finite amount of computational steps. We only need to
present a TM M that decides SWf.
M = On input 〈B, w〉, where B is a FSA and w w: PATH-LABEL is a string:
1. Simulate B on input w.
2. If the simulation ends in accept state uu ∈ Atomic-Node, accept; otherwise reject if it ends in a non-

accepting state u u ∉ Atomic-Node.
Proof. First we examine the input 〈B, w〉. It is a representation of a FSA B together with a string w. We can represent

B as a list of five components (Q, ∑, δ, q0, F). When M receives input, M first checks whether it properly
represents a FSA B and a string w. If not M rejects the input string w. Then M carries out the simulation in a
direct way, keeping track of B’s current state and B’s current position in the input w by writing the information
down on its tape. Initially, B’s current state is q0 ∈ Root and B’s current input is the entry point label λ. The
transition function δ updates states Q: NODE and position w. When M finishes processing the last symbol of w,
M accepts the input if B is in the accepting state; otherwise M rejects the input if B is in a non-accepting state.

7. Integration Approach

In Phase 2, we design a schema integration algorithm (Section 7.2) that uses regulated schemas and meta-data
as input to identify assertions and resolve heterogeneities. The schema integration algorithm automatically matches
terms to generate correspondence assertions. Matching of terms is based on the name and structure of schema
elements. Correspondence assertion is a declarative statement, generated by the integration system, which shows the
relationship between objects in different data sources at various levels of perception. The integration algorithm also
analyzes each assertion to produce formal rules. Formal rules state how to derive constructs to merge into the global
integrated schema. These formal rules, also called correspondence rules (ℜ), are generated automatically and stated
using set logic. The schema integration algorithm adopts the ladder approach [Batini et al, 1986] to integration so
that only two data sources are integrated at a time and the algorithm incrementally integrates a new component
schema with an existing immediate result. The specification of correspondence assertions and correspondence rules
is an integral part of our research; however, we omit them in this paper without any loss of utility. Interested readers
should see [Adiele and Ehikioya, 2004] for details.
7.1 Integration Constraints

To simplify correspondence rules generation process and improve the quality of meta-information provided to
the integration system, there is a need to explain certain constraints. These constraints influence the analysis of
correspondence assertions and consequently, the generation of correspondence rules by the integration algorithm.

To enable us define these constraints, first, we define the function Equal, which is a Boolean function that
shows if two context labels are the same. Let LEP be a set of entry-point labels. A pair of elements (L1

p
i, L2

q
j) are

equal, denoted Equal(L1
p

i, L2
q

j), if: 1) at least one of the elements is an entry-point label and has the same context
label as the other element which may not necessarily be an entry-point label; or 2) neither element is an entry-point
label and both elements have the same context labels such that p = q. Formally,

Equal: LABEL × LABEL
∀L1

p
i, L2

q
j: LABEL •

(∃ CS1, CS2: SCHEMA (L1
p

i ∈ CS1 ∧ L2
q
j ∈ CS2) •

(Equal(L1
p

i, L2
q

j) = TRUE) ⇔
(∃λ1, λ2: LABELλ1, λ2 ∈ LEP • (λ1 = L1

p
i ∧ λ2 = L2

q
j ∧ L1

p
i = L2

q
j) ∨ (7)

(λ1 = L1
p

i ∧ L2
q
j ≠ λ2 ∧ L1

p
i = L2

q
j) ∨ (λ2 = L2

q
j ∧ L1

p
i ≠ λ1 ∧ L1

p
i = L2

q
j) ∨

L1
p

i, L2
q

j ∉ LEP ∧ p = q ∧ L1
p
i = L2

q
j))

A Terminal-Element is an edge label where the target of the edge is in the set of atomic nodes. Formally,
Terminal-Element ≘ l l: LABEL •
 (∃e: EDGE • EdgeLabel(e) = l ⇔ Target(e) ∈ Atomic-Node)

NonTerminal-Element ≘ l l: LABEL •
(∃e: EDGE • EdgeLabel(e) = l ⇔ Target(e) ∈ Complex-Node)

Element Constraints.
1. Integrating a non-terminal element with a non-terminal element - Corresponding elements of the same modeling

concepts will be integrated into a similar element. For example, if L1 is an object in CS1 and L2 is an object in

Adiele & Ehikioya: Algebraic Signatures for Scalable Web Data Integration

 Page 68

CS2, and there is a correspondence assertion between both elements, then L1 and L2 are integrated into L ∈ GIS
(global integrated schema) as objects. Similarly, if L1 and L2 are attributes, they are integrated as attributes.
Formally,
NonTerminal-Element-Constraint: LABEL × LABEL → LABEL

∀a, b: LABEL a, b ∈ NonTerminal-Element •
NonTerminal-Element-Constraint (a, b) = (8)

 (c c: LABEL ∧ c ∈ NonTerminal-Element) ⇔
(a = b ∧ a, b ∈ NonTerminal-Element) • a = c ⊧ b = c

2. Integrating a non-terminal element with a terminal element - To integrate a non-terminal element with a
terminal element that have the same context label, we add both the terminal element and non-terminal element
to the integrated schema as two different elements. The source name of the terminal element is appended to its
context label so that it references its context schema. Formally,
Element-Constraint: LABEL × LABEL → LABEL
∀a, b: LABEL (a ∈ Terminal-Element ∧ b ∈ NonTerminal-Element) •

Element-Constraint (a, b) = (a′, c : LABEL
(a′ ∈ Terminal-Element ∧ c ∈ NonTerminal-Element) ⇔

(a = a′ ∧ b = c) • (9)
(∃ CS1, CS2: SCHEMA ∧ ∃L1, L2: LABEL (L1 ∈ CS1 ∧ L2 ∈ CS2 ∧

Parent(a) = L1 ∧ Parent(b) = L2) • L1 = L2 ⇒
(∃ GIS: SCHEMA ∧ ∃L: LABEL (L ∈ NonTerminal-Element ∧ L ∈ GIS) •

L = L1 ⊧ L = L2 ∧ Parent(a′) = L ∧ Parent(c) = L))
Note that a′ ∈ GIS is the same as CS1.a ∈ GIS which shows that a′ ∈ GIS is a terminal element that maps a

corresponding terminal element in CS1.
Inheritance Property of Integrated Elements. An object in the integrated schema inherits the descendants of any of
its children from the context schema if no further assertion exists between that child and a corresponding object in
another context schema that is involved in the integration process. For example, L1 ∈ CS1 ∧ L2 ∈ CS2 such that L1 =
L2 ⇒ ∃L: LABEL such that L ∈ GIS. Suppose L1

p
i ∈ Child(L1) ∧ ¬(∃ L2

q : LABEL L2
q ∈ Child(L2) • L1

p
i = L2

q
j))

then Descendant(L1
p

i) in the context schema will be added into the GIS as Descendant(Lq
k) since no other assertion

exists between L1
p

i and Child(L2). This integration process leverages the inheritance property to ensure that objects
integrated into the GIS maintain existing relationships with objects in the context schemas, such that the definitions
in the local schemas are still valid.

Let LSET be a set of context labels. A formal definition of Inheritance follows:
Inheritance: CL → CL
∀L1: LABEL • ∃ CS1: SCHEMA L1 ∈ CS1 •

Inheritance(L1) ⇔ (∃ L2: LABEL; ∃ CS2: SCHEMA L2 ∈ CS2 • L2 = L1 ∧
(∃a: LABEL • a ∈ Child(L1) ∧

(∀b: LABEL b ∈ Child(L2) • b ≠ a ⇒ (10)
(∃L: LABEL; ∃GIS: SCHEMA L ∈ GIS • L = L1) ∧

a ∈ Child(L1) ⇒ ∃c: Child(L) • a = c ∧
(∀ai: Descendant(a) • ∃ci: Descendant(c) • ai = ci))))

Example 4 illustrates elements constraints assumption and the inheritance property.

Example 4. An interesting case occurs when there is an assertion between an object L1 and an attribute b from CS1
and CS2, respectively. To simplify this exposition, let us consider a very simple example, the address of the author(s)
of a book modeled differently in two schemas, CS1 and CS2.

CS1 = Author [Name, Address [Number, Street, Code]]
CS2 = Author [Id, Name, Address]

Observe from Figure 4 that “Address” in CS1 is modeled as a non-terminal element with three child elements,
while “Address” in CS2 is modeled as a terminal element. An assertion exists between the non-terminal element,
“Address” and the terminal element “Address” since their parents are related and both have the same name. Relying
on element constraints assumption permits the integration of non-terminal element and its descendants as Address in
the GIS. For the terminal element, the source name is appended to its context label in the GIS (CS2.Address) so that
it references its context schema.

Journal of Electronic Commerce Research, VOL. 6, NO.1, 2005

 Page 69

02

02

Id

Name

Address

01

Author

Address
Author

0605 07

03

Number Street

01

Id

Author

Address

CS1 CS2
GIS

0403 05

Number Street

02

r0

Postal
Code

03

Name

r0

Name

04

Postal
Code

r0

04

CS2.Address

Figure 4: Attribute Integration Example

By the inheritance property of integrated elements, child elements of “Address” in CS1 are inherited into the
GIS since they do not occur as child elements of “Address” in CS2. If any of the child elements of “Address” in CS1
(e.g. CS1.Address.Street) had any descendant, such descendant would have been inherited into the GIS because it is
guaranteed not to occur in CS2.

Data Type Constraints.
1. When types are compatible, the less restrictive of the two data types being integrated is chosen as the type for

the GIS. For example, a decimal would be chosen when the types to be integrated are decimal and integer.
2. Data types that are not closely related are incompatible, e.g. string and integer. The union of the two local data

types will form the data type for the GIS so that both may be stored.

Cardinality Constraints. Another interesting thing to consider is how to resolve constraint conflicts among data
sources. We adopt a generous strategy that allows a wider scope of the constraints of the schemas involved in an
integration process by taking the least restrictive of the cardinality constraints. In this way, the cardinality
constraints of the schemas are subsumed in GIS. For example, if two objects L1 and L2 from schemas S1 and S2
respectively have the following corresponding pairs of cardinality constraints ([0:1], [1:1]), ([1:1], [1:n]), and ([1:n],
[0:n]), then the effective cardinality constraint for the GIS is ([0:1]), ([1:n]), and ([0:n]) respectively.

Terminal Element Constraints. Without prejudice to elements constraints, the assertion between terminal elements is
dependent on the assertions between their parents. If there is an assertion between terminal elements that conflicts
with an assertion between the parents of such terminal elements, to that extent, the terminal element assertion is
invalid, and does not lead to a “well-formed” integrated schema. Suffice it to say that, no correspondence assertion
exists between terminal elements unless there is an assertion between their respective parents. For example, a
correspondence assertion exists between terminal element a ∈ Child(L1) from CS1 and terminal element b ∈
Child(L2) from CS2 if and only if Equal(a, b) and Equal(Parent(a), Parent(b)).

The definition of a terminal element assertion (Terminal-Assertion) follows.
Terminal-Assertion: Terminal-Element × Terminal-Element
∀a, b: Terminal-Element •

Terminal-Assertion (a, b) ⇔ (∃ CS1, CS2: SCHEMA ∧
∃L1, L2: LABEL L1 ∈ CS1 ∧ L2 ∈ CS2 ∧ (11)

Parent(a) = L1 ∧ Parent(b) = L2) •
L1 = L2 ∧ Parent(a) = Parent(b)

If the defined correspondence assertions exist, the terminal elements are then integrated into the GIS according
to the assertion. Stated differently, the above formalism stipulates that no correspondence assertion exists between
any two corresponding terminal elements if the parents of the terminal elements are unrelated. For example, if the
parents of a and b are not related by any correspondence assertion, then a and b cannot be integrated into a
corresponding terminal element in the GIS. Thus, a and b should instead be inherited by their respective parents in
the GIS, using the inheritance property.

Adiele & Ehikioya: Algebraic Signatures for Scalable Web Data Integration

 Page 70

Key Constraints. Key constraints are resolved in the GIS by creating a new key that is the union of the two original
key elements. Suppose a ∈ CS1 is a terminal element and a key, and b ∈ CS2 is also a terminal element and a key,
and Parent(a) = Parent(b). This implies that a, b ∈ Child(L) ∈ GIS. But a and b cannot be keys in GIS because a
key element must be unique. The approach is to create a new key (say α) such that α = (a ∪ b). Let KEY be the set
of terminal elements that are key elements in a given schema. A formal definition of a key constraint follows.

Key-Constraint: Terminal-Element × Terminal-Element
∀a, b: Terminal-Element a ≠ b ∧ a, b ∈ KEY •

Key-Constraint(a, b) ⇒ (∃ CS1, CS2: SCHEMA; ∃L1, L2: LABEL (12)
(L1 ∈ CS1 ∧ L2 ∈ CS2 ∧ Parent(a) = L1 ∧ Parent(b) = L2) • L1 = L2 ⇒

(∃GIS: SCHEMA; ∃L: LABEL L ∈ NonTerminal-Element ∧ L ∈ GIS) •
a, b ∈ Child(L) ∧ ∃α ∈ Key • α = (a ∪ b))

7.2 The Integration Algorithm
Let d be the degree of each element, and let p and q represent the parents of elements. L1

p
i and L2

q
j (where, 0 ≤ i,

j ≤ d) represent elements of the local schemas S1 and S2 respectively. For example, L1
p
i represents the ith element

whose parent is P in S1, and L2
q

j represents the jth element whose parent is q in S2. Let LEP ⊆ L be the set of entry-
point labels such that the entry-point labels λ1 and λ2 are represented as L1 and L2 since i, j = 0 and p, q = ∅. In this
framework, matching of elements is based on names and structure of schema elements. Let ELS be the sum of all the
pairs of edges in (S1, S2), then,

ELS ≤ ∑∑
==

d

j

d

i 11

(L1
p

i, L2
q

j) (13)

The integration algorithm determines if Equal(L1
p
i, L2

q
j) where L1

p
i ∈ S1 and L2

q
j ∈ S2. The problem at hand is to

integrate two regulated schemas S1 and S2 into GIS. The integration process is of the form:
ϒGIS: ψ(Σ) × ℜ × Σ∼ → GIS (14)

where Σ is a set of elements of the pair (L1
p

i, L2
q
j) such that L1

p
i ∈ S1 and L2

q
j ∈ S2 and Equal(L1

p
i, L2

q
j). Σ∼ is a set of

elements from S1 and S2 such that for all elements in S1 and S2 the constraint ¬Equal(L1
p
i, L2

q
j) holds. The union of Σ

and Σ∼ represents the set of local schemas SLS. ψ(Σ) is the correspondence assertion between pairs of elements from
S1 and S2, and ℜ is a set of correspondence rules for generating the GIS from Σ and Σ∼. The elements of Σ are merged
into GIS according to their respective assertions, while elements of Σ∼ are merged into GIS such that the local
relationships between those elements and their parents are maintained. The integration algorithm uses a breadth-first
search strategy to manage an integration queue structure, IQ. The elements of IQ are pairs of labels from S1 and S2,
where the initial head of IQ is a pair of the entry-point labels (λ1, λ2) from S1 and S2, respectively. Pairs of elements
of (S1, S2) are enqueued into IQ in a parent-child fashion. The algorithm compares each pair of elements in (S1, S2) at
most once to dynamically identify similarities based on the matching of names and semantic descriptions. Three
operations dominate the algorithm, namely; 1) enqueue, which enqueues pairs of elements from S1 and S2 into IQ; 2)
compare compares each pair of elements from S1 and S2 to determine likely assertions; and 3) dequeue removes pairs
of elements that have been generated in GIS from IQ.

Initially, the pair of entry-point labels (L1, L2) are dequeued and compared. If L1 and L2 are equal, then pairs of
elements containing children of L1 and L2 (L1

p
i, L2

q
j) are enqueued into IQ to determine the specific assertion (ψi).

Once a particular assertion is established, merging occurs according to the corresponding integration rules (ϒi). The
Merge operation produces the correspondence rules (ϒi) and merges the elements of the local schemas into the GIS.
Every other pair in IQ containing any merged elements is also dequeued. The child elements of each merged pair
(L1

p
i, L2

q
j) are enqueued into IQ and the process is repeated. A child element of any element from S1 or S2 that is

merged into GIS is inherited if there is no assertion between that element and other elements in another local schema
that have the same parents.

If L1 and L2 are entry-point labels, and are not equal, then the algorithm searches through S2 to locate L1 and S1
to locate L2. The search returns “false” if not found, otherwise, the function returns “true”, and the location where it
was found. If found is true, the algorithm enqueues children of pairs of elements (L1

p
i, L2

q
j) that are equal into IQ,

and compare them to identify the particular assertion. The process is repeated until all the elements in the local
schemas are compared or inherited into the GIS. If found is false, then elements of the two schemas are merged
according to the corresponding assertion. The algorithm leverages the inheritance property to isolate inherited
elements from the search space.

Recall that the sum of the pairs of elements (since every edge represents an element) in the two schemas is
Θ(ES), and the cost of enqueuing and dequeuing those elements is O(ES). In this algorithm, every pair of elements is

Journal of Electronic Commerce Research, VOL. 6, NO.1, 2005

 Page 71

compared at most once, and the cost of comparing all the pairs of elements in any given Del-G is O(ES). Therefore,
the algorithm takes O(ES + ES) = O(2ES) = O(ES), where ES is the size of the sum of edges of (S1, S2).

8. Output Process

The goal of the output process is to have a transparent global integrated schema, GIS that represents all the
schemas in the data sources. The nature of the output shows the ability of the integration algorithm to resolve
heterogeneities. An integration system that resolves heterogeneities takes away the burden of identifying assertions
from the users.

Definition 13. A Global Integrated Schema (GIS) over a set of local schemas SLS SLS = U
n

i 1=

Si is a well-formed Del-

G schema where ∀L1
p

i: LABEL • (∃ SLS: SCHEMA • L1
p
i ∈ SLS ∧ Parent(L1

p
i) = p) ⇒ ∀Lr

j: LABEL • (∃GIS:
SCHEMA • Lr

j ∈ GIS ∧ L1
p

i = Lr
j).

An effective integration methodology must guarantee that the GIS is a non-redundant, unified representation of
all the data sources. In the subsection that follows, we show that the GIS correctly represent all the local schemas.
8.1 Correctness of the Integration Process

The integration mechanism produces a set of pre-computed views, GIS, that represents the local schemas, and
could be queried by different users across diverse platforms. The query process relies on such views to derive
correct answers. In Del-G, a regular expression represents a query that exploits path knowledge to retrieve all pairs
of nodes connected by a path. A query Q expressed in terms of the GIS is decomposed into sub-queries qi expressed

in terms of the local schemas U
n

i 1=

Si. The solution for Q is the computed union of all the partial solutions of qi.

To enable us prove the correctness of the integration system, we define the following restricting operators; the
operator (⊳) restricts the domain, and the operator (⊲) restricts the range of relations. These operators enable us
construct sets of objects that satisfy the function ϒGIS. We define the operators as functions.

-⊳-:ℙSLS × (SLS ↔ GIS) → (SLS ↔ GIS)
∀Si: ℙSLS, ϒGIS : (SLS ↔ GIS) • (15)

Si ⊳ ϒGIS = {(Li
p

j, Lr
k) Li

p
j ∈ Si ∧ (Li

p
j, Lr

k) ∈ Gr(ϒGIS)}3
The restriction imposed by the operator (⊳) implies that every element in SLS is mapped to an element in GIS such
that the domain of ϒGIS is the whole of SLS. S ⊳ R filters (Li

p
j, Lr

k) ∈ Gr(ϒGIS) for which Li
p
j ∈ Si and produces the

result relation.
-⊲-:ℙGIS × (SLS ↔ GIS) → (SLS ↔ GIS)
∀G: ℙGIS, ϒGIS: (SLS ↔ GIS) • (16)

ϒGIS ⊲ G = {(Li
p

j, Lr
k)Lr

k ∈ G ∧ (Li
p
j, Lr

k) ∈ Gr(ϒGIS)}
The restriction imposed by the operator (⊲) implies that every element in GIS is mapped to an element in SLS such
that GIS is the range of ϒGIS. ϒGIS ⊲ G filters (Li

p
j, Lr

k) ∈ Gr(ϒGIS) for which Lr
k ∈ G and produces the result relation.

Definition 14. A query Q on a schema S is a regular language over ∑, such that Q(S) = (u, li, v1). The triple (u, li, v1)
is a path from u to v1 labelled with li. The element (u, li, v1) is a solution (satisfies) to Q(S) if and only if there is a
Path-Label pl ∈ S such that pl in li and li in pl (where “in” is the sequence inclusion).

Recall that a query Q over GIS is decomposed into sub-queries (qii: ℕ1) over U
n

i 1=

Si. Suppose, there is exact

decomposition of Q into qi such that every query in qi is contained in Q(GIS) and Q(GIS) is also contained in

U
n

ji 1, =

qi(Sj), then we write;

3 Gr(R) ≘ {〈x, y〉x R y} [Sch94]

Adiele & Ehikioya: Algebraic Signatures for Scalable Web Data Integration

 Page 72

U
n

ji 1, =

qi(Sj) ⊑ Q(GIS) ⇒ Q(GIS) ⊑ U
n

ji 1, =

qi(Sj) • Q(GIS) ≡ U
n

ji 1, =

qi(Sj) (17)

where the symbol “⊑” shows that qi is contained in Q.

Corollary 1. Suppose Q(GIS) ≡ U
n

ji 1, =

qi(Sj), where Q(GIS) = (u, li, v1) and U
n

ji 1, =

qi(Sj) = (u1, lk, w), then (u, li, v1) ⊆ (u1,

lk, w) ∧ (u, li, v1) ⊇ (u1, lk, w).

Proof. Q(GIS) ≡ U
n

ji 1, =

qi(Sj) means that (u, li, v1) satisfies Q(GIS), which implies that there is a Path-Label pli in GIS

such that pli in li and li in pli. Notice that pli ∈ GIS implies that there exist plk ∈ SLS such that pli in plk ∧ plk in
pli ⇒ pli ∈ SLS since every element in SLS is represented at most once in GIS (from (15)). Also, pli ∈ SLS

implies that U
n

ji 1, =

qi(Sj) satisfies (u, li, v1) such that U
n

ji 1, =

qi(Sj) = (u, li, v1) (by the closed domain assumption).

Similarly, U
n

ji 1, =

qi(Sj) = (u1, lk, w) means that (u1, lk, w) satisfies U
n

ji 1, =

qi(Sj), which implies that there is a Path-

Label plk in SLS such that plk in lk and lk in plk. Observe that plk ∈ SLS implies that there exist pli ∈ GIS such
that pli in plk ∧ plk in pli ⇒ plk ∈ GIS (since GIS is the range of ϒi from (16)). Every Path-Label pli ∈ GIS is
unique (by Definition 10). So, if pli in plk ∧ plk in pli and plk ∈ GIS contradicts the uniqueness of pli.
Therefore, i = k such that pli = plk.

An interesting implication of Corollary 1 is that the GIS correctly represents all the elements in the local schemas

U
n

i 1=

Si.

9. Conclusions

Web data integration is a complex and detailed process that requires unambiguous explanations to elucidate the
underlying concepts. Despite recent advances in information and communication technologies most existing
integration systems still involve substantial manual input, and adopt ad hoc approaches to data integration without
necessarily considering the theoretical foundations and formalisms of such approaches, thus leading to minimal
successes. In this paper, we leverage a flexible semistructured data model and a common ontology to provide
scalability and correctness of the integration model. Our formalism reduces the complexity of the integration process
and guarantees that local schemas are correctly represented in a platform independent Del-G format. Our approach
scales over multiple data sources since the local schemas are well-formed and the integration methodology only
involves simple matching of terms based on semantic names. We also showed that the integration process correctly
generates the global integrated schema. This paper represents a shift in the traditional approach to data integration.
Plans to introduce more algebraic constructs to enhance the specification of the entire integration process are
underway.

Acknowledgements
The authors would like to thank Dr. Peter C. J. Graham and the anonymous reviewers. Their valuable comments and
suggestions greatly improved the quality of this paper.

REFERENCES
Adiele, C., Integration of Web Data Sources for E-Commerce Transactions, Ph.D. Thesis, Department of Computer

Science, The University of Manitoba, November 2004.
Adiele, C. and S. A. Ehikioya, “Dynamic Identification of Correspondence Assertions for Electronic Commerce

Data Integration”, Proceedings of the IEEE International Conference on Information Technology (ITCC 2004),
pp. 223-227, Las Vegas, NV, April 2004.

Alagar, V. S. and K. Periyasamy, Specification of Software Systems, Springer-Verlag Inc., New York, 1998.

Journal of Electronic Commerce Research, VOL. 6, NO.1, 2005

 Page 73

Bryant, A. and B. Colledge, “Trust in Electronic Commerce Business Relationships”, Journal of Electronic
Commerce Research, Vol. 3, No. 2, pp. 32-39, 2002.

Bukhres, O., J. Chen, A. Elmagarmid, X. Liu, and J. Mullen, “InterBase: A Multidatabase Prototype System”,
Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 534-539,
Washington, D.C., 1993.

Beneventano, D., F. Guerra, S. Magnani, and M. Vincini, A Web Service Based Framework for the Semantic
Mapping Amongst Product Classification Schemas, Journal of Electronic Commerce Research, Vol. 5, No. 2,
pp. 114-127, 2004.

Buneman, P., S. Davidson, M. Fernandez, and D. Suciu, “Adding Structure to Unstructured Data”, Proceedings of
the International Conference on Database Theory, Delphi, Greece, 1997.

Batini, C., M. Lenzerini, and S. Navathe, “A Comparative Analysis of Methodologies for Database Schema
Integration”, ACM Computing Surveys, Vol. 18, No. 4, pp. 323-364, December 1986.

Chau, P. Y. K., Inhibitors to EDI Adoption in Small Businesses: An Empirical Investigation, Journal of Electronic
Commerce Research, Vol. 2, No. 2, pp. 78-88, 2001.

Chawathe, S., H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman and J. Widom, “The
TSIMMIS Project: Integration of Heterogeneous Information Sources”, Proceedings of IPSJ Conference, pp. 7-
18, Japan, 1994.

Evincible Software, “E-Sign Transactions Platform: The Enterprise Architecture to Implement Electronic
Transactions Requiring Electronic Signatures”, White Paper, October 22, 2003, Available at:
http://www.evincible.com/resources/eSign%20Transaction%20Platform.pdf

Fensel, D., Ontologies: Silver Bullet for Knowledge Management and Electronic Commerce, Springer-Verlag, 2001.
Haas, L. M., D. Kossman, E. L. Wimmers and J. Yang, “Optimizing Queries Across Diverse Data Sources”, 23rd

Conference on Very Large Database Systems, Athen, Greece, 1997.
Haas, L. M., R. J. Miller, B. Niswonger, M. T. Roth, P. M. Schwarz and E. L. Wimmers, “Transforming

Heterogeneous Data with Database Middleware: Beyond Integration”, IEEE Data Engineering Bulletin, pp. 31-
36, 1991.

Larson, J. A., S. B. Navathe, and R. Elmasri, “A Theory of Attribute Databases with Application to Schema
Integration”, IEEE Transaction on Software Engineering, Vol. 15, No. 4, pp. 449-463, 1989.

Lee, M., S. Bressan, G. H. Goh and R. Ramakrishnan, “Integration of Information from Disparate Sources: A Short
Survey”, Workshop on Logic of Programming and Distributed Knowledge Management, pp. 155-158, UK,
April 1999.

Maamar, Z., “Commerce, E-Commerce, and M-Commerce: What Comes Next”, Communications of the ACM, Vol.
46, No. 12, pp. 251-257, December 2003.

The Metadata Coalition, “Metadata Interchange Specification” Technical Report Version 1.1, August 1997.
Available at: http://www.mdcinfo.com/MDIS/MDIS11.html

Microsoft Corporation, “BizTalk Framework 2.0 – Independent Document Specification”, Technical Report,
December 2000. Available at: http://www.microsoft.com/biztalk/default.htm

Papakonstantinou, Y., H. Garcia-Molina, and J. Widom, “Object Exchange Across Heterogeneous Information
Sources”, in Yu, P. S., and Chen, A. L. P., Editors, 1995, 11th International Conference on Data Engineering,
March 1995, pp. 251-260, Taipei, Taiwan.

Scheurer, T., Foundations of Computing: System Development with Set Theory and Logic, Addison-Wesley
Publishers, Reading, MA, 1994.

Sipser, M., Introduction to the Theory of Computation, PWS Publishing Company, Boston, MA., 1997.
Sheth, A. and G. Karabatis, “Multidatabase Interdependencies in Industry”, Proceedings of the ACM SIGMOD

International Conference on Management of Data, pp. 483-486, Washington, D.C., 1993.
Sheth, A. P. and J. A. Larson, J. A., “Federated Database Systems for Managing Distributed, Heterogeneous, and

Autonomous Databases”, ACM Computing Survey, Vol. 22, No. 3, pp. 184-236, September 1990.
Seo, D., Lee, D., Lee, K., and Lee, J., “Discovery of Schema Information from a Forest of Selectively Labeled

Ordered Trees”, Proceedings of the Workshop on Management of Semistructured Data, pp. 54-59, Tucson, May
1997.

Swatman, P. M. C. and P. A. Swatman, “Electronic Data Interchange: Organisational Opportunity, Not Technical
Problem”, Proceedings of the 2nd Australian Database-Information Systems Conference “DBIS'91”, pp. 290-
307, Sydney, Australia, February 1991.

Tygar, J. D., “Atomicity in Electronic Commerce”, Proceedings of the 15th Annual ACM Symposium on Principles
of Distributed Computing (PODC '96), pp. 8-26, New York, May 1996.

Adiele & Ehikioya: Algebraic Signatures for Scalable Web Data Integration

 Page 74

Uniform Code Council Inc., “SIL – Standard Interchange Language”, Technical Report, January 1999. Available at:
http://www.uc-council.org/e-commerce/ec-sil-general-overview.html

VeriSign® Fraud Protection Services, “Securing the Enterprise Payments Network”, White Paper, (Accessed on
December 22, 2003), Available at: http://www.verisign.com/resources/wp/fraud/PreventingFraud.pdf

W3C, “E-Business XML (ebXML): Enabling a Global Electronic Marketplace”, 2002. Available at:
http://www.ebxml.org

APPENDIX A

Appendix provides a glossary of the notations used in this paper. This glossary is based on simple set notations and
predicate logic as described in [Alagar and Periyasamy, 1998; Scheurer, 1994].

Symbols Meaning
ℙ Power set

ℙ1 Non-empty power set

ℕ1 A set of positive integers

ℕ A set of integers

∧ Logical “and”
∨ Logical “or”
¬ Logical “not”
⇒ Implies that (if then)
⇔ If and only if
 Satisfying
• Such that

≘ By definition, equal to

∈ Set membership
→ Member to member association in a function
∀ Universal quantifier
∃ Existential quantifier

⊳ The operator restricts the domain of a function

⊲ The operator restricts the range of a function

