
Journal of Electronic Commerce Research, VOL 7, NO.3, 2006

HOW TO TRACK COMPOSITE WEB SERVICES?
A SOLUTION BASED ON THE CONCEPT OF VIEW

Djamal Benslimane
Claude Bernard Lyon 1 University

Lyon, France
djamal.benslimane@liris.cnrs.fr

Zakaria Maamar
Zayed University

Dubai, United Arab Emirates
zakaria.maamar@zu.ac.ae

Chirine Ghedira

Claude Bernard Lyon 1 University
Lyon, France

chirine.ghedira@liris.cnrs.fr

ABSTRACT

This paper presents an approach for tracking composite Web services based on the concept of view. Web
services are subject to personalization when there is a need to accommodate user preferences. Preferences of users
are of various types like when the execution of a Web service should be initiated and where the outcome of this
execution should be delivered, too. To guarantee that user preferences are handled during the execution of Web
services, a view offers the opportunity of zooming into the specification that composes these Web services. For the
specification requirements, state chart and service chart diagrams are adopted. A deployed view over a progressing
specification features the dynamic nature of tracking composite Web services.

Keywords: Composition, Context, View, Web Service.

1 Introduction
1.1 Motivation

Web services technology offers, nowadays, a major support for a new generation of information systems
featured by different components that collaborate despite distribution and heterogeneity obstacles (Schahram and
Schreiner, 2005; Chen and Meixell, 2003; Chen et al., 2003; Kwok and Chi, 2006). A Web service is a software
component that other software components and humans can discover and trigger to satisfy different needs (e.g.,
weather forecasts). Several standards back the development of Web services for their discovery, description, and
binding, respectively (Milanovic and Malek, 2004). Taking advantage of the extensible Markup Language (XML) in
order to achieve their platform-independence feature, Web services also have the capacity to be composed into high
level business-processes usually referred to as composite services. Composition primarily addresses the situation of
a user request that cannot be satisfied by any available Web service, whereas a composite service obtained by
integrating available Web services might be used (Berardi et al., 2003). Composing services rather than accessing a
single service is essential and offers better benefits to users. For composition requirements, a composite service is
associated with a specification that describes among others the list of component Web services that participate in the
composite service, the execution order of the component Web services with respect to data and temporal
dependencies, and the corrective strategies in case of exceptions. There exist multiple languages for the specification
of Web services compositions including the Web Services Flow Language (WSFL) (Leymann, 2001) and the
Business Process Execution Language (BPEL) (Curbera et al., 2003). The primary aim of these specification
languages is to provide a high-level description of the composition process far away from any implementation
concerns. The specification of composite services is also concerned with the semantics of information that the
component Web services exchange (Sabou et al., 2003), but this is outside this paper's scope.

While much of the R&D on Web services have focused on low-level standards for publishing, discovering, and
invoking Web services (Ma, 2005), it is deemed appropriate tracking the execution of Web services. However, very

 Page 123

mailto:djamal.benslimane@liris.cnrs.fr
mailto:zakaria.maamar@zu.ac.ae
mailto:chirine.ghedira@liris.cnrs.fr

Benslimane et al.: How to Track Composite Web Services? A Solution Based on the Concept of View

little has been achieved to date regarding this tracking due to several obstacles including: current Web services are
not active components that can be embedded with context-awareness mechanisms, existing specification approaches
for Web services composition typically facilitate choreography only while neglecting context and its impact on this
choreography, and lack of guidelines supporting the operations of Web services tracking. One of the advantages of
this tracking is the possibility of adjusting Web services according to user preferences and constraints over the
environment (Maamar et al., 2005). Indeed, some users would like receiving answers to their personal requests
directly submitted to their personal email instead of office email. Personalization is tightly related to the features of
the environment in which the Web services are to be executed once they are triggered. These features can be related
to users (e.g., stationary, mobile), user level (e.g., expert, novice), computing resources (e.g., fixed device, mobile
device), time periods (e.g., in the afternoon, in the morning), physical locations (e.g., mall, cafeteria), etc. Sensing,
gathering, and refining the features and changes in an environment allow the definition of what is known as context.
Context is the information that characterizes the interactions between humans, applications, and the surrounding
environment (Brézillon, 2003). Embedding services whether Web or composite with context-awareness mechanisms
has several advantages as Maamar et al. report in (Maamar et al., 2005: Maamar et al., 2006).
1.2 Contributions

Context-aware computing refers to the ability of a software application to detect and respond to changes in its
environment (Roman, 2002). In this paper, the main use of context is to identify and adjust the specification of a
composite service according to the current features of the environment. To identify which part of the specification of
the composite service has to be adjusted because of the changes in the environment surrounding user, an assessment
of what-was-previously-expected vs. what-is-effectively-happening is required. We refer to this part of the
specification of the composite service as view. The assessment of "expected" vs. "happening" enables detecting any
discrepancy so corrective measures are promptly taken. We define a view as a dynamic snapshot over the
specification of a composite service according to a certain context.

Figure 1 illustrates a view that associates the context of user with a composite service specification. In this
figure, the view comprises WS2 and WS3 as component Web services. It should be noted that what-was-previously-
expected reflects the preferences of users towards the deployment of some Web services in terms of execution time,
execution location, etc. And what-is-effectively-happening reflects the capacity of satisfying the preferences of users
according to what currently exists in terms of computing resources, communication networks, etc. In this paper we
discuss the way we use views as a means for first, tracking the execution progress of Web services and second,
deploying corrective measures in case of non-compliance with the requirements of users. Our contributions are
multiple: a clear definition of what a view means in the context of Web services composition, mechanisms for
assessing the discrepancies between what-was-expected and what-is-happening, an approach to specify user context
and its respective view, and mechanisms for extracting and visualizing views over specifications of composite
services.

WS 2

WS 3

Composite Service

Associated
viewU-Context

Figure 1: Representation of a service chart diagram

1.3 Paper organization

The rest of this paper is organized as follows. Section 2 overviews the Web service model, motivates the
adoption of views with a running scenario, discusses the rationale of context and views, and finally presents some
related works on views. Section 3 is about the foundations and principles of a view. Section 4 presents the formal
model of a view. Section 5 discusses how the outcome of running a view over a composite service specification is
subject to another view. The specification of user context and description of the proof-of-concept prototype is
reported in Section 6 and Section 7, respectively. We draw our conclusions in Section 8.

 Page 124

Journal of Electronic Commerce Research, VOL 7, NO.3, 2006

2 Background
2.1 The Web service model

The Web service model comprises three entities: provider, registry, and consumer. The provider develops Web
services and describes them in a standard way using WSDL (Web Services Definition Language). Afterwards it
announces the Web services in a central registry, usually known as UDDI (Universal Description, Discovery, and
Integration) so potential consumers can locate them according to their needs. When a consumer retrieves a specific
Web service, it binds to it using an invocation protocol like SOAP (Simple Object Access Protocol). In (Dustdar and
Schreiner, 2005), the six different issues that impact Web services composition were reported: coordination,
transaction, context, conversation modeling, execution monitoring, and infrastructure. WS-CAF standing for Web
Services Composite Application Framework is a Sun Microsystems initiative for dealing with coordination,
transaction, and context issues (Bunting et al., 2003).
2.2 Running scenario

Our scenario concerns Melissa, a tourist who just landed in Dubai. Melissa has a PDA and plans to use it as a
tourist mobilebook instead of carrying brochures. Upon arrival to the airport she decides on downloading some
applications into her PDA as the tourism authorities offer those free-of-charges. These applications constitute the
front-ends of Web services that concern tourism in Dubai.

Melissa picks sightseeing and shopping applications. Melissa is notified that these applications can be combined
according to a certain composition pattern, and she decides on doing so. Melissa's plans are to visit outdoor places in
the morning and go shopping in the afternoon. The first part of the plan is subject to weather forecasts as outdoor
activities are cancelled in case of hot weather. Initially Melissa is prompted among other things to select some
outdoor places, indicate the pickup/drop-off times for sightseeing and shopping, and express her need for a guide
during the visits.

Once Melissa's preferences are set, they are submitted to appropriate Web services for processing. With regard
to the first activity, sightseeing Web service checks with weather Web service the forecasts for the five coming
days1. If there is no hot-weather warning, the scheduling of the places to visit starts by ensuring that these places are
open for public on these days, and transportation and guide are arranged. The logistics of Melissa's multiple rides is
affected to transportation Web service, which identifies for instance the type of vehicle, and the possibility that
Melissa shares rides with other tourists heading towards the same places. In case of hot-weather warning,
sightseeing Web service might suggest different places (e.g., museums) where indoor activities can take place. Same
considerations apply to the shopping activity, which consist of checking out the running promotions in the malls that
Melissa has selected. If Melissa has included several malls in her shopping plan, the distance between them is
considered so appropriate transportation is scheduled, too. Transportation Web service is responsible for
coordinating the timings among all the activities. Once the specification of Melissa's plan is finalized, a light version
of this specification is submitted back to her PDA for records. By light version we mean the following details: list of
participating Web services, their execution chronology, and approximate duration of the planned activities. Extra
details can be added to the light version of a specification if needed.

The day after her arrival, Melissa is given a ride to an historical site. Due to an unexpected traffic jam, her PDA
(in fact a software component residing in the PDA and acting on Melissa's behalf (Boudriga and Obaidat, 2004))
compares her current location to the location in which she is supposed to be (i.e., historical site) at that time.
Noticing that Melissa is not in the agreed location, her PDA takes actions by sending a note to sightseeing and
transportation Web services so corrective measures are performed like informing the guide about the delay.

The aforementioned scenario yields insight into the multiple challenges that tracking Web services faces. Some
of these challenges include: what are the various reasons that initiate contacting Web services, is the location of a
person sufficient for tracking the execution of the specification of her plan, what are the arguments (e.g., location
and expertise) that could populate user context, how much does context of Web services contribute to this tracking,
how to identify the component Web services that constitute a view executed over a specification, what are the
relevant mechanisms that enable extracting and visualizing a view, and what are the features that a specification
language for Web services composition (e.g., BPEL) has to have so a view happens with less interruptions to the
execution of a specification?
2.3 Rationale of context

Despite the wide embracement of Web services, they still lack the capability that could propel them to the
acceptance level that features traditional integration middleware such as CORBA and DCOM. This lack of
capability is primarily due to the trigger-response exchange pattern that is imposed on Web services and their
interaction models with the external environment whether peers, users, information sources, etc. The compliance

1 In a previous research, Web services interactions were dealt with as conversations (Maamar et al., 2005).

 Page 125

Benslimane et al.: How to Track Composite Web Services? A Solution Based on the Concept of View

with this pattern means that a Web service needs only to process the requests it receives, without for example
considering its execution status, or even questioning about the validity of these requests. However, there exist
several situations that call for Web services self-management so that flexibility, autonomy, and stability
requirements are met. By flexibility, we mean the capacity of a Web service to adapt its behavior by selecting the
appropriate operations that accommodate the ongoing situation (e.g., negotiation, monitoring) in which it operates.
By autonomy, we mean the capacity of a Web service to accept demands of participation in composite services,
rejects such demands in case of unappealing rewards, or eventually propose other alternatives for its participation by
recommending some peers. And, by stability, we mean the capacity of a Web service to resist changes while
maintaining function and recover to normal levels of function after a disturbance. To meet these requirements, Web
services have to assess their environment prior they engage in any composition. In fact, Web services need to be
context-aware.
2.4 Rationale of views

In the three-level ANSI-SPARC architecture, a view corresponds to the structure of the database as it appears to
a particular user. In the relational model, a view is defined as a virtual relation that is dynamically derived from one
or more other base relations. The concept of view is also used in the workflow community. Workflow view was
suggested as a support mechanism for the interoperability of workflows across multiple businesses (Chiu et al.,
2004).

Various reasons motivate our adoption of views for tracking Web services. First, the view mechanism provides
a powerful and flexible security approach by hiding the complete specification of a composite service from users
and the process responsible for adjusting this specification. Only the relevant parts of a specification, which are
subject to adjustment, are presented. Second, because the same specification of a composite service is offered to
several users for triggering, multiple views over this specification can be obtained at different levels of granularity
ranging from the dependency between Web services and the execution preferences associated with Web services to
the corrective measures that Web services use. Finally, a view helps propose criteria like security and visualization
that specification languages for Web services composition have to include.
2.5 Some related works

There are several research initiatives in the field of Web services (Schahram and Schreiner, 2005). However, to
our knowledge, none of these initiatives have attempted using views for tracking the deployment of personalized
Web services. In the rest of this section, we highlight some of the works that have supported our thoughts and
inspired shape our view-based tracking of personalized Web services.

An experience reporting the use of views in Web services is presented in (Fuchs, 2004). Fuchs adopted views to
support the adaptability of Web services in a heterogeneous environment. Views enable service providers to
segment their offerings in a logical fashion and provide specialized WSDL definitions for different potential groups
of users. To this end, a service view describes the allowed operations and where to communicate with these
operations. According to Fuchs, the service view fills in an important gap in Web services development by
supporting the variety of interaction patterns across all the set of partners who may use specific aspects of the
operations involved in the service.

In (Liu and Shen, 2003), Liu and Shen claimed that given the diverse requirements of the participants involved
in a business process, it is critical to provide these participants with adequate process information. Their solution
uses a process view, which is an abstracted process that is derived from a base process for modeling virtual
workflow process. As a result, participants are provided with various views of the same process, thanks to an
automatic generating tool.

In (Pistore et al., 2004), the authors address the issue of Web services composition planning and monitoring.
Pistore et al. propose an approach based on the "planning as model checking" techniques in order to overcome
difficulties related to planning under uncertainty. These difficulties are non-determinism, partial observability, and
extended goals.

The notion of view is adopted by Roman et al. (Roman et al., 2002), who suggested a declarative approach to
agent-centered context-aware computing in ad-hoc wireless environments. Because context, in (Roman et al., 2002),
is seen as fine-grained units referred to as views, a view constitutes a projection of the maximal context together
with an interpretation that defines the rules of engagements of a software agent in a particular view. The maximal
context includes information that all hosts in the network store and the context information (e.g., location) that the
agents sense on these hosts.

Nassar et al. proposed VUML, standing for View-based Unified Modeling Language, as a means for supporting
the concept of multiview class (Nassar et al., 2003). VUML's objective is to store and deliver information according
to users' viewpoints. Nassar et al.'s proposal consists of a base class (i.e., default view) and a set of views that
correspond to different viewpoints obtained over the base class. Based on user's profile, a view-extension

 Page 126

Journal of Electronic Commerce Research, VOL 7, NO.3, 2006

relationship is set between a view and an extension of the default view.

3 Foundations of views

Before we discuss the foundations of view, we overview first state/service chart diagrams as a means for
specifying compositions. A specification of Melissa scenario is also given in this section.
3.1 State/Service chart diagram

A state chart diagram is a graphical representation of a state machine that visualizes how and under what
circumstances a modeled element changes its states (Harel and Naamad, 1996). Furthermore, a state chart diagram
shows which activities are executed as a result of the occurrence of events.

A service chart diagram is a means for modeling and specifying the component Web services of a composite
service (Maamar et al., 2003). It enhances a state chart diagram, putting now emphasis on the context surrounding
the execution of a Web service rather than only the states that a Web service takes (Figure 2). To this purpose, the
states of a service are wrapped into five perspectives. The state perspective corresponds to the state chart diagram of
the service. The flow perspective corresponds to the execution chronology of the composite service in which the
service participates. The business perspective identifies the organizations that offer the service and post it on an
UDDI registry. The information perspective identifies the data that are exchanged between the service and the rest
of the services of the composite service. Finally, the performance perspective illustrates the ways of invoking the
service. More details on service chart diagrams are given in (Maamar et al., 2003).

When it comes to Web services personalization, users indicate when and where they would like to have these
Web services performed according to particular periods of time and particular locations (additional types of
preferences could be added). To illustrate user preferences, location and time perspectives are anchored to a service
chart diagram (Figure 2). Location/Time identifies particular places/time periods (e.g., classroom/at 8am). In this
paper, the semantics of time and location perspective is based on the work of (Allen, 1983) and (Papadias and Sellis,
1994), respectively.

Data from
previous services

Data to
next services

Performance
type

Previous
services

Next
servicesBusiness

Web service

in

State 1 State 2
B

State j
E

outLocation Time

Figure 2: Combination of context and view

Because a composite service is made up of several component services, the process model that underlies this

service is specified as a state chart diagram (the value-added of state charts to Web services composition is
discussed in (Benatallah, 2002)). In this state chart diagram, states are associated with the service chart diagrams of
the component services (Figure 2), and transitions are labeled with events, conditions, and variable assignment
operations. Figure 3 is the specification of the composite service of Melissa scenario. Each component service is
associated with a service chart diagram: sightseeing (SI), weather (WE), shopping (SH), and transportation (TR).
These service chart diagrams are connected through transitions; some of these transitions have constraints to satisfy
(e.g., [confirmed (hot weather)]).

SCD-TR
(TRansportation)

(SCD: Service Chart Diagram)

SCD-SH
(SHopping)

SCD-SI
(SIghtseeing)

SCD-WE
(WEather) [confirmed (hot weather)]

yes

no

Figure 3: Specification of the composite service of Melissa scenario

 Page 127

Benslimane et al.: How to Track Composite Web Services? A Solution Based on the Concept of View

3.2 The view meta-model
Figure 4 illustrates the meta-model of view for tracking Web services. This meta-model revolves around two

types of concept. The first type of concept identifies the building blocks of any context-aware and Web services-
based system namely: context, Web service, and composite service. The second type of concept identifies the
mechanism of running context-based requests over specifications of composite services. The view implements this
mechanism. A view is represented with a rounded-corner rectangle in Figure 4, so it is differentiated from Web
service and composite service concepts that are represented with regular rectangles.

Context is of three types: user (U-context), Web service (WS-context), and composite service (CS-context). At
this stage of our research, we only focus on views associated with U-contexts of users. The connection (context,
user/Web service/composite service) is highlighted in Figure 4 with related to edges. U-context enables tracking
user in terms of current location, current activities, etc. WS-context refers to the current capabilities and ongoing
participations of a Web service in concurrent compositions. Finally, CS-context informs about the execution status
of the component Web services of a composite service.

View
Applied over Associated with

Of type

Related to

Related to

User

Context

CS WS U

Legend

CS: Composite service

WS: Web service

U: User

Related to

Pa
rti

cip
ar

e
in

Initial

Derived Allows obtaining

Web service

O
rd

er
ed

/[
Tr

an
sit

io
ns

]

CS
specification

Of type

Figure 4: Representation of the view meta-model

Similar to context, a composite service specification is decomposed into two types: initial and derived. An

initial specification is the specification that a designer devises for the first time, and in which he describes for
instance the chronology of the component Web services of a composite service and the types of dependencies
between them. Figure 3 is a composite service specification of type initial. A derived specification is obtained after
running a view over a specification. This specification might be either of type initial or derived. To illustrate these
two types of specification, the connection (view, composite service specification) is highlighted in Figure 4 with two
different edges: applied over as solid edge and allows obtaining as dashed edge. Therefore, a derived specification
can also be subject to another view operation. The capability of reusing the derived specifications of composite
services is another argument in favor of adopting views for Web services tracking as motivated in Section 2.3.
Finally, the aggregation of Web services into composite services is highlighted in Figure 4 with participate in edge.
This participation complies with a specific execution chronology that corresponds to ordered/[transitions] line.
[Transitions] represents the conditions of connecting Web services together.

The dynamic aspect of the view meta-model consists of two steps. The first step checks the transitions that have
constraints (e.g., [checked(walking distance)], Figure 3) before any view is applied over a specification. Checking
transitions limits the number of Web services of a composition specification to be involved in a view. Once these
constraints are satisfied because of the features of the current context, the second step identifies the parameters that
will be included in the extraction of a view from a composite service specification. Two parameters are identified:
execution time and execution location.

4 Formal model of a view

In the previous sections, we illustrated how a view is dependent on the preferences of users and constraints that
frame the transitions between Web services. Execution time and execution location are examples of preference, and
weather forecasts and walking distance are examples of constraint. This section presents a formal specification of
the view concept and proceeds next with an application of this formal specification to Melissa scenario.

 Page 128

Journal of Electronic Commerce Research, VOL 7, NO.3, 2006

4.1 Definitions
Definition 1 - State chart diagram
Let ISCD and DSCD be the set of Initial and Derived State Chart Diagrams, respectively. And, let SCD be the

set of all State Chart Diagrams that specify composite services. SCD= SCD∪ DSCD. A state chart diagram
scd∈SCD is a triple scd=<S,T,Tc> where:

• S={s1, s2,…} is the set of temporal and localized service chart diagrams. ∀ s∈S, s=fs(t,l) where t and l
represent time and location parameters, respectively.

• T={t1, t2,…} is the set of unconstrained transitions.
• Tc={tc1, tc2,…} is the set of constrained transitions (e.g., is the weather hot?).

Definition 2 - Context
Let CONT be the set of all potential contexts that can be generated after data collection (e.g., from sensors) and

refinement. A context cont∈CONT is associated with the function F(U, W, C) where U, W, and C represent User,
Web service, and Composite service contexts. As mentioned earlier, only U-context is used for extracting derived
state chart diagrams. U-context is defined by the function fU(arg1, arg2,…), where argi is a user parameter such as
status and location.

In the following we formally describe through the concept of derived state chart diagram, how a view is
extracted from a given scd according to a given context cont.

Definition 3 – Derived state chart diagram
Let scd and cont be a state chart diagram (initial or derived) and a context. A derived state chart diagram

dscd∈DSCD is a tuple dscd: View(scd, cont)=<S',T',Tc'> where:
• S' S. ⊆
This means that a derived specification does not accept any additional services through their respective
service chart diagrams. However, some existing elements like states and transitions of S could be excluded
from the derived state chart diagram. For instance if the constraints on an incoming transition of a service
chart diagram are not satisfied in a certain context, then this service chart diagram will be excluded from
the derived state chart diagram.
• T'={t' | either t'∈T InitialState(t')∧ ∈S' or ∃ tc∈Tc | t'=FullInstanciation(tc,cont) ∧

InitialState(t')∈S'}.
InitialState function determines the initial state of a transition. FullInstanciation function returns an
unconstrained transition when the constraint on this transition is satisfied in the current context cont.
Therefore, the unconstrained transitions in T' of a derived state chart diagram dscd are obtained either from
(1) the unconstrained transitions of scd for which the initial state chart diagram belongs to S', or (2) the
constrained transitions of scd that are satisfied in the current context cont.
• Tc'={tc' | tc'∈Tc UnSatisfied(tc', cont) = false ∧ ∧ InitialState(tc')∈S'}.
Tc' is the set of constrained transitions tc' that are unknown (i.e., neither satisfied nor unsatisfied) in the
current context cont. Plus, the initial state of these constrained transitions is an element of S'. UnSatisfied
function checks whether a transition is satisfied in the current context.

4.2 Application to Melissa scenario
Figure 3 represents scdMelissa, the state chart diagram of Melissa scenario. The diagram is a triple <S,T,Tc>

where S={scd-si, scd-we, scd-sh, scd-tr}, T={t0, t1, t2, t11}, and Tc={t7, t8, t9, t10}. Let us assume that Melissa's
context returns details on weather conditions and walking distance between malls: cont = ((confirmed(hot
weather)=yes checked(walking distance)=yes). Figure 5 is the derived state chart diagram dscd that is extracted
from scdMelissa for this given context cont. dscd is defined by a triple <S',T',Tc'> where S'={scd-si, scd-we, scd-sh},
T'={t0, t1, t2, t7, t10} and Tc'=Ø.

∧

The constrained transitions t7 and t10 in scd turn out unconstrained in dscd. Their respective constraints are
satisfied in the current context (cont =(confirmed(hot weather) = yes ∧ checked(walking distance) = yes)). Not
satisfied in the current context cont are the unconstrained transitions t8 and t9, which are excluded from dscd. In
general a derived state chart diagram is in a constant evolution along with the dynamic nature featuring the user
context (Figure 6). For instance, constrained transitions become unconstrained when more information about the
user's context are made available. In the case of Melissa, the obtained derived-state chart diagram is qualified as
final; all its transitions are unconstrained. The current time and location values will permit the detection of the Web
services that are under execution. This is completed using time and location perspectives of the service chart
diagram.

 Page 129

Benslimane et al.: How to Track Composite Web Services? A Solution Based on the Concept of View

(SCD: Service Chart Diagram); y: yes; n: no

SCD-SI
(SIghtseeing)

t0

t1

t2

SCD-SH
(SHopping)t5 t6

t7SCD-WE
(WEather)t3 t4

y t10

Figure 5: Sample of a derived state chart diagram

Figure 6 illustrates the progress of a view as time advances, location changes, or constraints on the environment

are satisfied. U-context1 and U-contexti represent past and current context of user, respectively. Each context is
associated with a view. "Applied over" layer in Figure 6 corresponds to the mechanism that supports running a view
over a composite service specification. Since a view is context-dependent, a view is tightened to the constant
evolution of context. This evolution is backed by Lonsdale and Beale (Lonsdale and Beale, 2004). They consider
context not as a static phenomenon but as a dynamic process, where context is constructed through the learner's
interactions with the learning materials and the surrounding world over time. Mobile learning is the application
domain of Lonsdale and Beale's project.

Time

U
se

r's
 lo

ca
tio

n

U-context 1 U-context i

View progress

As time advances
As location changes

As constraint becomes satisfied

Past Current
Associated
with view 1

Associated
with view i

Composite service specification

"Applied over" layer

Figure 6: Representation of a view progress

5 Management of derived composite service specifications

In Figure 4, the specification of a composite service was specialized into two types: initial and derived. We
positively argued that a view could be applied over a derived specification, which could have been attained either
from an initial or another derived specification. The capacity of reusing derived specifications was another argument
in favor of adopting views as a mechanism for tracking Web services.

It is worth noting that since the last time a derived state chart diagram was generated (e.g., Figure 5), the
environment has definitely changed like new content for context, new time period, new location, etc. This means
that the derived state chart diagram has to be reviewed before it can be used in another view operation. This
probably means adding/discarding transitions and states to/from this derived state chart diagram, which results in a
new derived state chart diagram.

In order to maintain a consistent derived state chart diagram when the context cont is updated, we have
developed a set of procedures that permit reflecting the instantaneous changes on a derived state chart diagram. An
example of change could be a transition that is now valid in the current context, but was invalid in the previous
context. These procedures are based first, on associating four colors (red, blue, green, and black) with transitions of
a state chart diagram and second, on mapping this diagram onto a graph where states and transitions correspond to
nodes and edges, respectively.

• Let AN be a set of accessible nodes. An accessible node is a state of the derived state chart diagram
that is reachable using the transitions which are not declared as unsatisfied (either satisfied or
unknown) in the current context cont.

 Page 130

Journal of Electronic Commerce Research, VOL 7, NO.3, 2006

• Different colors are associated with a transition t:
o t is blue if and only if t is satisfied and InitialState(t) ∉AN; i.e., t is satisfied but its input state

is not yet reachable.
o t is green if and only if t is satisfied and InitialState(t) ∈ AN; i.e., t is satisfied and its input

state is reachable.
o t is red if and only if t is unsatisfied.
o t is black if and only if t is neither satisfied nor unsatisfied. This happens when enough details

on t are missing from the context.
• When the context cont changes of content, the state(color) of some transitions is affected (i.e., a

transition which was satisfied becomes unsatisfied, etc.).
• After updating the color of a transition, other transitions can also be affected because of this update

(i.e., a green transition can change color to blue if its previous transition becomes red, etc.).
To manage the change in the color of transitions and the reflection of this change on the whole derived state

chart diagram, we defined a set of procedures (Appendix 1). These procedures are responsible for adding/discarding
states and transitions to/from a state chart diagram according to the information that the current content returns. For
illustration purposes Figure 7 presents Red_To_Blue procedure. It is executed when a transition t becomes satisfied
after adding new elements to the context cont.

Once the procedures of Appendix 1 are executed according to the content of a given context, the new derived
state chart diagram on which a view will be performed, is represented in the graph by the path connecting states
using only transitions of green and black colors. The rest of the graph corresponds to the specification of the
composite Web service, which is irrelevant to the content of the current context.

Proc Red_To_Blue(t)
Input: t Red Transition
Begin
// Executed when the unsatisfied transition t becomes satisfied
t.Color ← Blue // T moves to Bleu
in ← InitialState(t)
on ← Out_State(t)
// Check whether the new satisfied transition t can be added to the dscd diagram and then

 propagate this change
if in ∈ {AN} and on ∉ {AN} then
 AN ← AN ∪ {on }
 t.Color ← Green
 for t' ∈ Ongoing_Transitions (on) do
 If Color (t') == Blue then Blue_To_Green(t')

 end if
 end for
end if
End

Figure 7: Red_To_Blue procedure

6 Definition of user context

We have shown that applying a view over a composite service specification depends on the relevance and
quality of the information that U-context caters for this view process (Figure 1). In what follows we detail the
internal structure of U-context. We rely, to a certain extent, on our previous work (Ghedira et al., 2002). Prior to that
we list the objectives that are to be reached by using U-context: provide a traceability means of the actions that a
user has executed in the past, is currently executing, and might be executing in the future; consider the changes in a
user's needs; and classify and present information on user long-term properties including her role in the society (e.g.,
travel agent), her status abroad (e.g., tourist), etc.

Based on the aforementioned objectives, we organize U-context along a set of attributes where each attribute is
linked to a table-based data structure. These attributes are of different types and have different potential applications.
Therefore, we classify the attributes according to the dynamic aspect of the information that features a user. For
instance user location always changes while user gender is to a certain extent static. In addition the interests of a user
are also added to his respective context so that appropriate proposals are made. If Melissa is on sports avenue

 Page 131

Benslimane et al.: How to Track Composite Web Services? A Solution Based on the Concept of View

(userlocation ← GET(U-context(Melissa).location)) and the top sightseeing place on this street is Dubai's soccer
stadium, the gender of Melissa (usergender ← GET(U-context(Melissa).gender) could help propose Dubai's national
museum situated two streets down Melissa's current location instead of the soccer stadium. This constitutes an
attractive proposal for Melissa if she sets the attribute of her interest in arts to very high.

The classification of U-context's attributes has two parts. The first part concerns the long-term attributes2 and
the second part concerns the attributes of the environment that surrounds the user. The Long-Term Attributes (LTA)
of U-context are as follows (U-contextLTA = <U1,U2,U3>).

• U1 is about the user's personal characteristics in terms of age, social status, etc.
• U2 is about the user's interests in certain topics including name, level of interest, etc.
• U3 is about the user's perceptual and motor skills and limitations as well. The capabilities of his

devices3 (e.g., Melissa's PDA) are also included in U3.
With regard to the Attributes of the Environment (AE) of U-context they are as follows (U-contextAE

=<U4,U5>).
• U4 is about the user's situation in terms of current location and ongoing activities. A location may be

obtained from sensors or advanced positioning techniques.
• U5 is about the user's current state. This information is more complex to conceptualize as it refers to

cognitive and psychological aspects.

U-Context
ULTA= <U1, U2, U3> UAE= <U4, U5>

U1: Personal characteristics
U11: age<int> - (Melissa, 24)
U12: gender<char> - (Melissa, F)
U13: activity<strg> - (Melissa, prof)

U2: Interest in topics
U21: topic<strg> - (Melissa:, art)
U22: level<char> - (Melissa, h/high)

U3: Capacity
U31: motor<strg> - (Melissa, null)
U32: limitation<char> - (Melissa, l/low)
U33: device<strg> - (Melissa: nokia)

U4: Situation
U41: location<strg> - (Melissa, X street)
U42: action<strg> - (Melissa, visiting)

U5: Current state
U51: cog. state<strg> - (Melissa, null)
U52: psy. state<strg> - (Melissa, stress)

Figure 8: Components of U-context

As Figure 8 illustrates, The integration of U-contextLTA and U-contextAE into U-context is at this stage of our

work sufficient to support the generation of views over specifications of composite services. One of the benefits of
associating users with U-contexts is the possibility of generating trails, which capture for each user his daily
activities. Clarke and Driver define a trail as a collection of locations together with associated information about the
locations and a recommended order of visiting them (Clarke and Driver, 2004). A trail makes it possible to explore
adaptive characteristics common to all mobile, context-aware applications.

In Figure 4 context is associated with three types namely user, Web service, and composite service (with an
emphasis on the user context throughout this paper). According to (Henricksen and Indulska, 2004) context models
are classified into sensed, static, profiled (user-supplied), and derived. The U-context complies with sensed and
profiled models; for instance user's location is sensed and user's interests constitute a part of his profile. The W-
context complies with the sensed model; for instance a service's execution status is sensed. Finally, The C-context
complies with the derived model as it relies upon the W-contexts of the component Web services to derive the
context of a composite service. In the context model of (Henricksen and Indulska, 2004), user activities are in the
form of a temporal fact type that covers past, present, and future activities. We are adopting a similar representation
for users' activities with the various arguments that associate services with previous, current, and next periods of
time. In addition, associations between users and their communication channels and devices as reported in

2 A user profile is built-upon the long-term attributes.
3 The 3W Composite Capabilities/Preferences Profiles group is developing standards that enable service
providers to request the devices' capabilities through their profile.

 Page 132

Journal of Electronic Commerce Research, VOL 7, NO.3, 2006

(Henricksen and Indulska, 2004) are considered in the U-context.

7 Proof-of-concept development
A proof-of-concept prototype for demonstrating the feasibility of the view-based approach was developed. We

use Jbuilder 9.0, which has a toolkit for building, testing, and deploying Web services, and includes as well an
explorer facility for publishing and searching for Web services. For demonstration purposes, we assume that
contextual information associated with user is already made available and converted into XML (Figure 9).

<User xml:about="Melissa">

<!-Static user information->
<name> Melissa </name>
<age> 24 </age>
<gender> F </gender>
…

</User>
<Situation>

<!-Current local information->
<location> Dubai </location>
<action> Walking </action>
…

</Situation>
<State>

<!- User state information>
<cognitive> … </cognitive>
<psychological> … </ psychological>
…

</State>
<Topic>

<!- Topic Description->
<name> Computer </name>
<level> 5 </level>
…

</Topic>
Figure 9: Melissa's current context in XML

Figure 10 overviews the prototype's major functionalities: translation of composite service specification into

XML, and checking of contextual information. The translation is a two-step process. The first step describes the
composition itself after mapping the specification of this composition from state chart diagram into BPEL. Current
implementations of BPEL do not provide the flexibility and adaptability that composite processes require during
changing business rules (Rosenberg and Dustdar, 2005). Thus, BPEL processes cannot handle context changes
between component Web services. We decided on automating this part of the translation process by extending
BPEL. This extension consists of representing the information contained in a state chart diagram using a new
element called <transition>. This element is added to a BPEL specification and comprises 3 attributes: transition
name, condition (satisfied, unsatisfied, unknown) that describes when a Web service is available, and color (red,
blue, green) that refers to the current state of the condition. The second step of the translation process describes the
rules that apply to a BPEL specification in an XSLT template file. These rules compare the values of the contextual
information to the conditions expressed in the BPEL specification, and proceed afterwards with changing the state of
Web services in this specification when the comparison is valid.

With regard to the checking functionality of Figure 10, it uses an XML schema to describe the context structure
and check that contextual information fits into this structure. Once contextual information parameters are fed into
the XSLT template, we can first, compare the effective values of context to the extension elements of the BPEL
specification and second, generate a derived specification (we recall that a derived specification is also subject to
additional views). Web services that have unsatisfied conditions are removed from the BPEL specification, so that a
new view over the previous specification is created. For example let us assume that a Web service has <transition
name="weather" condition="sunny" color="green"> element. If the weather context is assessed as "rainy", then
the state of the Web service will be switched to "red" standing for unavailable. Thus the Web service is discarded
from the derived specification. The XSLT template uses the XPath query engine in order to locate the elements of
the specification that match the contextual information it has received.

 Page 133

Benslimane et al.: How to Track Composite Web Services? A Solution Based on the Concept of View

View derivation in XML

3. Submitted
to XSLT

XSLT
template

CS specification
in XML

4. XPath

5. Output

Context Structure
(XML Schema)

2. Checking

Context information in XML

Composite service
specification

1. Translation
into XML

Subject also
to view

Figure 10: Operations in the view prototype

We also started the development of the various procedures (Appendix 1) that manage the dynamic nature of a

derived state chart diagram. For instance, once this diagram is obtained, the current context is updated with the latest
changes in the environment. The objective is to ensure that these changes are automatically reflected first, in the
context and second, in the derived state chart diagram before this diagram can be subject to another view operation.

8 Conclusion

In this paper, we presented a view-based approach for tracking the execution progress of Web services. A view
permits zooming into the specification that composes Web services. We have also shown that while much of the
R&D on Web services to date have focused on low-level standards for publishing, discovering, and invoking Web
services, it is deemed appropriate to track Web services so that user preferences are properly handled. Our
contributions are summarized as follows: a clear definition of what a view is in the context of composite Web
services, mechanisms for extracting and visualizing views over specifications of composite services, and
mechanisms (a set of procedures) for managing the dynamic nature of these specifications in terms of
adding/discarding Web services to/from specifications. A proof-of-concept prototype to demonstrate the feasibility
of views was developed using various technologies such as JBuilder, XPath, and XML.

Before we highlight our future work, we suggest some features that characterize a view run over a composite
service specification (adapted from (Liu and Shen, 2003)): membership - a derived specification, which is the
outcome of running a view, is always comprised in the initial specification; chronology Preservation - the order of
operations in a specification subject to a view is always maintained in its derived specification; and temporal validity
- a derived specification remains valid as long as the context does not change, otherwise, a new view is run again.

Acknowledgments
The authors would like to thank Michael Mrissa for his contributions to the project described in this research paper.

REFERENCES
Allen, J. F. "Maintaining Knowledge about Temporal Interval", Communications of the ACM, Vol. 26, No. 11:832-

843, 1983.
Benatallah B., M. Dumas, Q.Z. Sheng, and A. Ngu, "Declarative Composition and Peer-to-Peer Provisioning of

Dynamic Web Services", Proceedings of The Eighteen International Conference on Data Engineering
(ICDE'2002), San Jose, USA, 2002.

Berardi, D., D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella, "A Foundational Vision for e-Services",
Proceedings of Ubiquitous Mobile Information and Collaboration Systems Workshop (UMICS'2003),
Klagenfurt/Velden, Austria, 2003.

Boudriga, N. and M.S. Obaidat, "Intelligent Agents on the Web: A Review", Computing in Science Engineering,
Vol. 6, No. 4:44-49, 2004.

Brézillon, P. "Focusing on Context in Human-Centered Computing", IEEE Intelligent Systems, Vol. 18, No. 3:62-
66, 2003.

Bunting, D., M. C. O. Little, M. Mischkinsky, J. Newcomer, E. Webber, and K. Swenson, "Web Services Composite
Application Framework (WS-CAF)", Version 1.0, 2003.

 Page 134

Journal of Electronic Commerce Research, VOL 7, NO.3, 2006

Chen, M. and M.J. Meixell, "Web Services Enabled Procurement in the Extended Enterprise: An Architectural
Design and Implementation", Journal of Electronic Commerce Research, Vol. 4, No. 1:140-155, 2003.

Chen, M., A.N.K. Chen, B. Benjamin, and M. Shao, "The Implications and Impacts of Web Services to Electronic
Commerce Research and Practices", Journal of Electronic Commerce Research, Vol. 4, No. 1:128-139, 2003.

Chiu, D. K. W., S. C. Cheung, S. Till, K. Karlapalem, Q. Li, and E. Kafeza, "Workflow View Driven Cross-
Organizational Interoperability in a Web Service Environment", Information Technology and Management
Journal, Vol. 5, No. 3/4:221-250, 2004.

Clarke, S. and C. Driver, "Context-Aware Trails", IEEE Computer, Vol. 37, No. 8:97-99, 2004.
Curbera, F., R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, "The Next Step in Web Services", Communications

of the ACM, Vol. 46, No. 10:29-34, 2003.
Dustdar, S. and W. Schreiner, "A Survey on Web Services Composition", International Journal on Web and Grid

Services, Vol. 1, No. 1:1-30, 2005.
Fuchs, M. "Adapting Web Services in a Heterogeneous Environment", Proceedings of The Second IEEE

International Conference on Web Services (ICWS'2004), San Diego, USA, 2004.
Ghedira, C., P. Marret, J. Fayn, and P. Rubel, "HANS: A Meta-Model for the Development of Adaptive User

Interfaces in an Hypermedia Environment", Proceedings of The Second IEEE International Symposium on
Signal Processing and Information Technology (ISSPIT'2002), Marrakech, Morocco, 191-196, 2002.

Harel, D. and A. Naamad, "The STATEMATE Semantics of Statecharts", ACM Transactions on Software
Engineering and Methodology, Vol. 5, No. 4:293-333, October 1996.

Henricksen, K. and J. Indulska, "A Software Engineering Framework for Context-Aware Pervasive Computing",
Proceedings of The Second IEEE International Conference on Pervasive Computing and Communications
(PerCom'2004), Orlando, Florida, USA, 2004.

Kwok, S.H. and R.T. Chi, "Digital Rights Management for Mobile Commerce Using Web Services", Journal of
Electronic Commerce Research, Vol. 7, No. 1:1-13, 2006.

Leymann, F. "Web Services Flow Language", IBM Corporation, 2001.
Liu, D. R. and M. Shen, "Workflow Modeling for Virtual Processes: An Order-Preserving Process-View Approach",

Information Systems, Vol. 28, No. 6:505-532, 2003.
Lonsdale, P. and H. Beale, "Towards a Dynamic Process Model of Context", Proceedings of The First International

Workshop on Advanced Context Modeling, Reasoning, and Management, Nottingham, England, 2004.
Ma, K. J. "Web Services: What's Real and What's Not", IEEE IT Professional, Vol. 7, No. 2:14-21, 2005.
Maamar, Z., B. Benatallah, and W. Mansoor, "Service Chart Diagrams - Description & Application", Proceedings of

The Alternate Tracks of The Twelve International World Wide Web Conference (WWW'2003), Budapest,
Hungary, 2003.

Maamar, Z., D. Benslimane, and N. C. Narendra, "What Can Context do for Web Services?", Communications of
the ACM, 2006 (forthcoming).

Maamar, Z., S. Kouadri Mostéfaoui, and Q. H. Mahmoud, "On Personalizing Web Services Using Context",
International Journal of E-Business Research, Special Issue on E-Services, Vol. 1, No. 3:41-62, 2005.

Milanovic, N. and M. Malek, "Current Solutions for Web Service Composition", IEEE Internet Computing, Vol. 8,
No. 6:51-59, 2004.

Nassar, M., B. Coulette, X. Crégut, S. Ebersold, and A. Kriouile, "Towards a View Based Unified Modeling
Language", Proceedings of The Fifth International Conference on Enterprise Information Systems
(ICEIS'2003), Angers, France, 2003.

Papadis, D. and T. Sellis, "On the Qualitative Representation of Spatial Knowledge in 2D Space", The Very Large
Data Bases Journal, Vol. 3, No. 4:479-516, 1994.

Pistore, M., F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso, "Planning and Monitoring Web Service
Composition", Proceedings of The Eleventh International Conference on Artificial Intelligence: Methodology,
Systems, and Applications (AIMSA’2004), Varna, Bulgaria, 2004.

Roman, G. C., C. Julien, and A. L. Murphy, "A Declarative Approach to Agent-Centered Context-Aware
Computing in Ad Hoc Wireless Environments", Proceedings of The Second International Workshop on
Software Engineering for Large-Scale Multi-Agent Systems (SELMAS'2002), Orlando, Florida, USA, 2002.

Rosenberg, F. and S. Dustdar, "Business Rules Integration in BPEL - A Service-Oriented Approach", Proceedings
of The Seventh International IEEE Conference on E-Commerce Technology (CES'2005), Munich, Germany,
2005.

Sabou, M. D. Richards, and D. Van Splunter, "An Experience Report on Using DAML-S", Proceedings of The
Twelve International World Wide Web Conference (WWW'2003), Budapest, Hungary, 2003.

 Page 135

Benslimane et al.: How to Track Composite Web Services? A Solution Based on the Concept of View

APPENDIX 1
The followings are the algorithms that we devised for managing a derived state chart diagram dscd. This consists of
adding/withdrawing transitions to/from a state chart diagram based on the content of the current context. These
algorithms use two functions: ongoing_Transitions(on) returns the transitions that have on as an initial state, and
all_Incomings(on,colors) checks whether the colors of all the transitions with on as an output node, are part of the
given set colors.

 Proc Red_To_Blue(t)

Input: t Red Transition
Begin
// Executed when the unsatisfied transition t becomes satisfied
t.Color ← Blue // T moves to Bleu
in ← InitialState(t)
on ← Out_State(t)

// Check whether the new satisfied transition t can be added to the dscd diagram and then propagate
this change

if in ∈ {AN} and on ∉ {AN} then
AN ← AN ∪ {on }
t.Color ← Green
for t' ∈ Ongoing_Transitions (on) do

If Color (t') == Blue then Blue_To_Green(t')
end if

end for
end if
End

Proc Blue_To_Red(t)

Input: t Blue Transition
Begin
// Executed when the satisfied transition t becomes unsatisfied
t.Color ← Red
End

Proc Blue_To_Green(t)

Input: t Blue Transition
Begin

// Executed when the satisfied transition t is to be added to the dscd diagram.
t.Color ← Green
// Add to dscd diagram all the satisfied transitions which have output state of t as an initial state
on ← Out_State(t)
if on ∉ {AN} then

AN ← AN ∪ {on }
for t' ∈ Ongoing_Transitions(on) do

if Color (t') == Blue then Blue _To_ Green (t')
end if

end for
end if
End

Proc Green_To_Red(t)

Input: t Green Transition
Begin
// Executed when the satisfied transition t becomes unsatisfied
t.Color ← Red
on ← Out_State(t)

 Page 136

Journal of Electronic Commerce Research, VOL 7, NO.3, 2006

// Withdraw from dscd diagram some green transitions with on as an output state.
if all_Incomings(on,{red, blue})==true then

AN ← AN – {on}.
for t' ∈ Ongoing_Transitions(on) do

if Color (t') == Green then Green_To_Blue(t')
end if

end for
end if

8.1 End

Proc Green_To_Blue(t)
Input: t Green Transition

8.2 Begin
// Executed when the green satisfied transition t changes to blue
t.Color ← Blue
on ← Out_State(t)
// Withdraw from dscd diagram some green transitions with on as an output state
if all_Incomings(on,{red, Blue})==true then

AN ← AN – {on}
for t' ∈ Ongoing_Transitions(on) do

if Color (t') == Green then Green_To_Blue(t') end if
end for

end if
End

Proc Black_To_Blue(t)

Input: t Black Transition
8.3 Begin

// Executed when the unknown transition (neither satisfied nor unsatisfied) t becomes satisfied.
t.Color ← Blue
in ← InitialState(t)
on ← OUT_State(t)

// Check whether the new satisfied transition t can be added to the dscd diagram and then propagate
this change.

if in ∈ {AN} and on ∉ {AN} then
AN ← AN ∪ {on}
t.Color ← Green
for t' ∈ Ongoing_transitions (on) do

if color (t') == Blue then Blue_To_Green(t')
end if

end for
end if

9 End

Proc Black_To_ Red (t)
Input: t Black Transition

9.1 Begin
// Executed when the unknown transition (neither satisfied nor unsatisfied) t becomes unsatisfied.
in ← InitialState(t)
if in ∈ {AN} then

Green_To_Red(t)
Else Blue_To_ Red(t)

end if
End

 Page 137

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Paper organization

	2 Background
	2.1 The Web service model
	2.2 Running scenario
	2.3 Rationale of context
	2.4 Rationale of views
	2.5 Some related works

	3 Foundations of views
	3.1 State/Service chart diagram
	3.2 The view meta-model

	4 Formal model of a view
	4.1 Definitions
	4.2 Application to Melissa scenario

	5 Management of derived composite service specifications
	6 Definition of user context
	7 Proof-of-concept development
	8 Conclusion
	8.1 End
	8.2 Begin
	8.3 Begin

	9 End
	9.1 Begin

