
Abrams et al.: Ad Delivery with Budgeted Advertisers 
 

 Page 16

AD DELIVERY WITH BUDGETED ADVERTISERS:   
A COMPREHENSIVE LP APPROACH 

 
 

 Zoë Abrams 
Yahoo!, Inc.,  

Sunnyvale, CA 94089  
za@yahoo-inc.com 

 
S. Sathiya Keerthi  

Yahoo!, Inc.,  
Sunnyvale, CA 94089  

selvarak@yahoo-inc.com 
 

Ofer Mendelevitch 
Yahoo!, Inc.,  

Sunnyvale, CA 94089  
oferm@yahoo-inc.com 

 
John A. Tomlin  

Yahoo!, Inc.,  
Sunnyvale, CA 94089  

tomlin@yahoo-inc.com 

 
 

ABSTRACT 
 

We study a comprehensive framework for sponsored search which incorporates advertiser budgets, query 
frequency forecasts, and pricing and ranking schemes. We propose a linear program for optimizing revenue (or the 
total value to advertisers) that has an exponential number of variables; however, we describe how it can be solved 
efficiently using column generation. The formulation is easily extendable to various levels of problem complexity, 
adaptable to dynamic environments, fast, and works well in terms of practical considerations. Simulations show 
significant improvements in revenue and efficiency.  
 
Keywords: column generation, sponsored search, budgets, advertising 
 
1. Introduction 

Electronic commerce is thriving [Kim 2004; Chen 2003; Alczak 2006] and one of the driving forces behind its 
success is internet advertising. Search engine companies earn millions of dollars every day by auctioning off 
advertisement slots. Internet advertising is primarily accomplished through Sponsored Search, ads placed on publisher 
pages and banner ads. In this paper we will primarily be concerned with Sponsored Search, but we note that scheduling 
of ads for third party publishers can benefit from a very similar treatment. In Sponsored Search there are several 
sources of data which must be considered. Firstly, there are the actual bids by advertisers for the search terms 
(queries), secondly the distribution of query frequencies and finally the advertiser budgets, when these are declared.  

The query frequencies limit the number of times a search engine can display its advertisers. Note that, unlike the 
bids and budgets, query frequencies are not under the control of the advertisers or, for that matter, of the search engine. 
It is well known [Silverstein 1999] that search engine query frequency distribution typically has relatively few queries 
with large volume and revenue, and a very large number of queries with extremely low volume. Therefore, we 
overcome most of the uncertainty in query volumes by selecting a relatively small subset of queries whose near-term 
volumes are easy to forecast, yet still constitute a large amount of the overall revenue.  

Advertisers or their agents, on the other hand, do have the ability to control their budgets. An advertiser’s budget 
may constrain the number of times their ads appear, even when they have made a high bid on a query term. One might 
ask why they would wish to do so. There are several possible reasons, among them: protection against click-fraud, an 
over-all company advertising budget, and the desire to control the allocation of that budget between various media and 
campaigns. Whatever the reason, the search engine must determine which advertisers to display for which queries, 
given these constraints.  

Pricing and ranking are additional parameters of the system that influence revenue. The VCG mechanism 
[Vickrey 1961; Clarke 1971; Groves 1973] can be applied, but in practice search engines predominantly use the 
generalized second price (GSP) auction, described in more detail by Edelman et al. [Edelman 2006]. Advertisers are 
ranked according to the product of the price they bid for receiving a click, and a quality score. Each is charged a price 
per click equal to the minimum they would have had to pay to maintain their rank.  

The problem we consider is how to allocate advertisers to queries such that budget constraints are satisfied and 
efficiency or revenue is maximized. This problem is posed as a linear program that takes a global view, and 
coordinates advertiser spend across the chosen time-period, such as the next hour, or an entire day. With the combined 
knowledge of forecast query volumes, advertiser budgets, advertiser bids and the pricing and ranking algorithm, we 

mailto:tomlin%7d@yahoo-inc.com
mailto:tomlin%7d@yahoo-inc.com
mailto:tomlin%7d@yahoo-inc.com
mailto:tomlin@yahoo-inc.com


Journal of Electronic Commerce Research, VOL 9, NO 1, 2008 

 Page 17

formulate a comprehensive mathematical framework. Because of the flexibility of LP models, we are able to extend 
our approach beyond its original form to take onto consideration multi-level budgets, dynamic changes in the data, and 
a number of other practical extensions.  
1.1. Related Work 

Incorporating advertiser budgets into the marketplace design is recognized as crucial, and a growing amount of 
research addresses this subject. Several recent papers have considered the effect of budgeted advertisers specifically 
within the context of internet keyword auctions (e.g. [Borgs 2005; Abrams 2006]). The fields of on-line and 
approximation algorithms have also approached the topic. The widely noted paper [Vazirani 2005] presents an online 
algorithm, with a competitive ratio 11

ε
− , when the volume and sequence of queries is unknown. Mahdian et al. [2007] 

extend this work by considering a tradeoff depending on the level of accuracy in volume predictions.  
There has been a considerable amount of work done in the related field of (one-off) multi-item combinatorial 

auctions, leading to algorithms which are practical and efficient in a wide variety of settings. (see [Schrage 2001] for a 
useful survey). These algorithms typically employ linear or integer programming (LP/IP), exploiting a very mature 
and efficient group of technologies. Although the characteristics of the sponsored search problem we consider make it 
difficult to apply the known techniques directly—for instance the frequently repeated nature of the auctions—the 
approach is appealing. In particular the work of Dietrich and Forrest [2001], which uses column generation to 
determine the set of winning bids, is suggestive.  
1.2. Motivating Example 

To illustrate how critical the proper consideration of advertiser budgets might be, and how poorly a greedy 
algorithm might perform in the presence of these budgets, we examine the following highly simplified example. 
Suppose we have two queries 1q , and 2q . A single advertiser is displayed for each query, there is a reserve price 
of 1C ε− , all advertisers have the same expected clickthrough rate, and the relevant bids and budgets are shown in 
Table 1.  
 
Table 1: Bids and budgets 

Bidder Bid for 1q  Bid for 2q  Budget  

1b   1C ε+   1C   1C   

2b   1C   0  1C   
 

As Table 2 shows, a straightforward application of GSP that displays the highest bidder is not optimal, both in 
terms of efficiency and revenue. Let us assume that within the budgets’ time intervals, 1q  appears, followed by 2q . 
Then bidder 1b  would pay the second bid price 1C  (bid by bidder 2b ) and exhaust his budget on query 1q . When query 

2q  arrives, no bidder is eligible for the query. Now consider the alternative allocation that shows 2b  for 1q , producing 
revenue 1C ε− , then shows 1b  for query 2q , also producing revenue 1C ε−  for a total revenue of 12C ε− , nearly 
double the revenue of the greedy allocation. Thus, a more global viewpoint, one which takes into account the 
keywords throughout the time period, and the budget situation for each advertiser, can lead to increased efficiency and 
revenues. When this simple example is complicated many fold by thousands of queries, bidders and budgets, the 
potential for inefficiency is obvious.  
 
Table 2: Allocation options 

Allocation Shown for 1q  Shown for 2q  Total Revenue Total Efficiency  
Greedy 1b   -  1C   1C ε+    
Optimal 2b   1b  12 2C ε−   12C    

 
1.3. Paper Outline 

In this paper, we start out defining the model, problem and LP formulation in Section 2. We then describe the core 
technology in Section 3, i.e. the column generation algorithm that is used to solve the LP. One advantage of our 
approach is that the problem formulation and algorithmic solution are quite flexible and extensible. Section 4 
describes three possible extensions: providing guarantees for individual bidders, allowing more flexible types of 
budget specifications, and accommodating pricing schemes based on the Vickrey-Clarke-Groves mechanism. The 
presented approach is also adaptable in the face of dynamic environments (described in Section 5). Next, in Section 6, 



Abrams et al.: Ad Delivery with Budgeted Advertisers 
 

 Page 18

we move to practical considerations in implementing our solution. Finally, we end with describing our simulation 
results in Section 7.  
 
2. Model and Problem Definition 

Let the auction marketplace consist of a set of queries 1 2{ }NQ q q q= , ,...,  and bidders 1 2{ }MB b b b= , ,..., . We 
usually use the index i  to denote query iq  and the index j  to refer to bidder jb . The bidding state of the marketplace 

at time t  is defined by a (sparse) matrix tA , where t
ijA  is the bid amount that the j -th bidder’s is bidding on the i -th 

query iq . For simplicity of analysis we assume a static bidding state ( tA A= ) over some time-slot. While realizing 
that in practice this is not true due to bid management (either manually or by software), simulations suggest the effects 
of these types of changes are negligible. We will accommodate this dynamic aspect by frequently resolving our model 
as the data evolves, as is done in many other applications (see Section 2). We also assume that bids do not change as 
the allocation rule changes (i.e. this is not an equilibrium analysis). For each bidder jb , we denote by jd  the daily 
budget limit specified by the bidder. jd  is an account level limit, i.e., it represents a spend limit across all queries for 
that account1. If a budget is not specified, we refer to this bidder as an unbudgeted bidder and set jd = ∞ .  

Given a time-slot of interest, let iv  be a deterministic estimate of the number of times each query iq  will appear 
within that time slot. For each query, we define the bidding landscape as an ordered set of bidder indices 

{ 1 }i p p iL j j B p P= : ∈ , = ,...,  , where the indices pj  are sorted by some ranking function, and iP  is the number of 
bidders in the landscape for query iq .  

In principle, we could now formulate an optimization model in which the variables corresponded to the number of 
times each available ad was shown with each query. However, such a model would require complex constraints and 
auxiliary discrete features to ensure the ordering required by the bidding landscapes for each query. We quickly 
abandoned such an approach in favor of a column-oriented approach which enforces the precedence explicitly. This 
modeling approach has a considerable history, and was quite recently used in a related model for item allocation in 
combinatorial auctions (see [Dietrich 2001]). The algorithm here is quite different, since the payoffs are not 
deterministic and the auction is frequently repeated, among other features, but the spirit is similar.  

We now define the crucial concept of a slate of ads corresponding to (and in fact a subset of) the bidding 
landscape. These slates will correspond to the columns and variables of the linear program (LP) we formulate below. 
Each bidding landscape iL  is mapped into a set of slates k

iL  , each being a unique subset of iL  which can be obtained 

by deleting members of iL  (while maintaining the ordering) and then truncating (if necessary) to k
iP  (at most P ) 

members. More formally, the k -th slate for ad i  includes a unique subset (of length k
iP  ) of the indices of iL  , and is 

defined as { }k k k k
i l l i iL j j L l P P= : ∈ , ≤ ≤  , where P  is the maximum number of slots available for advertising on the 

page. The indices in k
iL  are ordered as in iL  (i.e., in order of ranking). By convention, if there are less than 1P +  

members an additional dummy member, bidding the reserve price, may be added for the purpose of computing 
second-bid prices.  

Two ranking (ordering) methods have been commonly used. The first and older method, sometimes known as the 
“Overture method” is bid-ranking, so that (by a slight abuse of notation):  

1 ... ...
ii ij iPA A A≥ ≥ ≥ ≥  

This scheme has now been generally superseded by expected revenue-ranking where the bidders on the term are 
ranked by product of the bid value ijA  and a quality score or clickability value ijQ  which is assumed to incorporate 
the likelihood of the ad being clicked on, based on relevance of the ad to the query, among other factors. The bidders 
are thus ordered so that:  

1 1 ... ...
i ii i ij ij iP iPA Q A Q A Q≥ ≥ ≥ ≥  

Hence in any slate k  for query i  we expect the subset of ads chosen to also satisfy:  

1 1 1 1
... ...k k k k k k

p p p pij ij ij ij ij ijA Q A Q A Q
+ +

≥ ≥ ≥ ≥  

The pricing scheme we use charges a price per click equal to some small increment plus the bid times quality 

                                                           
1 We could also associate budgets with other entities such as a campaign (see Section 2). 



Journal of Electronic Commerce Research, VOL 9, NO 1, 2008 

 Page 19

score of the advertiser one slot below, divided by the bidder’s own quality score. This scheme ensures that a bidder 
pays just enough to hold his position in the slate. Precisely, the price per click (PPC) of bidder pj , denoted

p

k
ijPPC , is:  

1

1

k
p

k
p p

k
p

i jk
ij i j

i j

Q
PPC A

Q
ε+

+

,

,
,

= ⋅ +  

In practice ε  is some small quantity, such as a penny. Note that this is a modified second bid auction where the price 
per click actually paid depends on the next bid, and the ratio of clickabilities. Since setting all the ijQ  to 1 would result 
in the same slate and PPC as if we had used bid ranking, we shall ignore bid-ranking as a special case and consider 
only revenue ranking.  

Let us also introduce a click through rate (CTR) denoted k
pi j pT

, ,
 for the rate at which the ad from bidder k

pj  in 

position p  in slate k  for query i  is clicked on per showing of the slate. These CTRs are estimated based on historical 
click data as well as other factors, and will be used both in the algorithm and the simulation described in Section 3.  
Assuming independence of the CTRs, we can now express the expected revenue-per-search (rps) in our model for this 
slate and this query as the sum of the individual expected revenues per click:  

1

1
1

k
i k

p
k k
p p

k
p

P
i j

ik i j i j p
p i j

Q
r A T

Q
+

+

,

, , ,
= ,

= ⋅ ⋅∑  (1) 

We now introduce the variables ikx , which represent the number of times slate k
iL  appears in the given time slot. 

The expected total revenue for the time-slot, over all queries, is therefore:  

1

N

ik ik
i k

r x
=
∑∑  (2) 

We represent the total spend for each bidder j  as  

1

N

ijk ik
i k

c x
=
∑∑  (3) 

where:  

1

1
0

0 otherwise

k
p

k k
p p

k
p

i j k
ii j i j p

ijk i j

Q
A T p P P

Qc
+

+

,

, , ,
,

⎧
⋅ ⋅ < ≤ ≤⎪⎪= ⎨

⎪
⎪⎩

 (4) 

is the expected cost to bidder j  of appearing in position p  and in slate k  for query i . Observe that this expectation 
is with respect to the click through rate, and that the quality scores are deterministically known.  
2.1. Linear Programming Formulation 

We may now formally define the following linear programming (LP) problem:  
Indices  

1i N= ,...,  The queries   
1j M= ,...,  The bidders   
1 ik K= ,...,  The slates (for query i )  

Data  
jd   The total budget of bidder j    

iv   Expected number of occurrences of  keyword i    

ijkc   Expected cost to bidder j  if slate k  is shown for keyword i     

ikr   Expected revenue from slate k   for keyword i  
Variables  

ikx   Number of times to show slate k  for keyword i   
Budget Constraints  

ijk ik j
i k

c x d j≤ ∀∑∑  (5) 



Abrams et al.: Ad Delivery with Budgeted Advertisers 
 

 Page 20

Query Volume Constraints  
ik i

k
x v i≤ ∀∑  (6) 

Revenue Objective  
Maximize ik ik

i k
r x∑∑  

2.2. Alternate Objective Functions 
While maximizing expected overall revenue is obviously attractive from the auctioneer’s point of view, it may not 

appear so attractive to the individual bidders. However the LP approach can accommodate a variety of alternate 
objective functions. One possibility is to maximize expected efficiency under the assumption that the bidders have 
expressed their true value for a click by the bids2. This would correspond to an LP objective of:  
Value Objective  

 Maximize k k
p p

iki j i j pi k p A T x
, , ,,
⋅ ⋅∑ ∑ .

Note that this objective has coefficients computed from the first prices, not second prices.  
Even more simply we may decide to optimize the number of clicks obtained. This is accomplished by using an LP 

objective:  
Clicks Objective 

 Maximize k
p

iki j pi k p T x
, ,,

⋅∑ ∑ .

For these particular two objectives, we could also reformulate the LP to have a polynomial number of variables 
and constraints, versus using the more involved column generation approach. Regardless of how the solutions are 
computed, it is obvious that other objectives could be formulated. If we use the column generation approach, we might 
take some composite weighted sum of the value, clicks, and revenue objectives. In general the “Value Objective” has 
advantages when considering the problem from the perspective of economics.  
 
3. Column Generation Algorithms 

It is clear that the number of potential columns in the above LP could be very large indeed. For each query, the 
number of possible slates is exponential in the number of budgeted bidders on the query, and there are many queries. It 
is therefore impractical to enumerate all the possible columns corresponding to the variables ikx . If there were no 
binding budgets, then the optimal solution would be the trivial one consisting only of the top P  bidders from the 
landscape (called a base slate) being shown for each query. In fact we would expect, and experiment confirms, that for 
many queries, the base slate will be the only one shown even when there are active (binding) budget constraints, while 
some others use multiple slates—usually not more than a handful. The trick is to know which handful. The same 
situation occurs in many other LP applications where each column represents one of many possible complex activities. 
Early examples included models where the column represented a path through a network or a cutting pattern for 
cutting up stock sizes of material. These particular models require that small auxiliary models be solved to generate 
relevant columns—shortest path problems in the former case, and a “knapsack” problem in the latter.  

Using a conventional column-generation approach [Dietrich and Forrest 2001; Lubbecke and Desrosiers 2005], 
we do not attempt to generate every slate k

iL  a priori, but to generate an initial subset (say the iL ) and then generate 
columns as needed using the dual values of the linear program. Considering to begin with the revenue maximizing 
objective, let jπ  be the marginal value for bidder j ’s budget, i.e. the simplex multipliers [Dantzig 1963] for the thj  

constraint (5) and let iγ  be the marginal value for the thi  keyword, i.e. the simplex multipliers for the thi  constraint 

(6), then a column corresponding to slate k
iL  (and hence to variable ikx ) can be profitably introduced into the model 

if:  
0

k
i

ik ijk j i
j L

r c π γ
∈

− − >∑  (7) 

For each keyword i  we seek to maximize k
i

ik ijk jj Lr c π
∈

−∑  (or equivalently, minimize k
i

ijk j ikj L c rπ
∈

−∑ ) over all 

legal slates k
iL . If a slate is found such that (7) is satisfied, the corresponding slate and its variable are introduced into 

the problem. If no such slate exists (for any i ) then an optimal solution has been obtained.  
                                                           
2 Although this is not always true, we believe it is a reasonable assumption in this context, when actual values are 
unavailable. 



Journal of Electronic Commerce Research, VOL 9, NO 1, 2008 

 Page 21

Looking at the structure of the coefficients in (7) and the definitions of ikr  and ijkc  from Equations (1) and (4), 
respectively, we see that the subproblem is to maximize (for the given jπ ):  

1

1
1

( ) (1 )
k

i k
p

k k k
p p p

k
p

P
i j

ik i j p i j j
p i j

Q
F T A

Q
π π+

+

,

, ,
= ,

= ⋅ ⋅ ⋅ −∑  (8) 

over all legal slates k
iL . When the number of budgeted bidders for a query is not too large this may be done by 

enumerating all legal subsets of k
iL  , evaluating (8) on the fly, until a k

iL  is found for which ik iF γ> . The 
corresponding column is then added to the problem. If no new column satisfying this condition is found, the present 
solution is optimal. If there are more than a few such legal subsets, we may need to algorithmically generate columns 
(slates) which maximize (8) and test whether they satisfy ik iF γ> . If the maximizing slate does not satisfy this 
inequality we may pass on to the next query, since no improving slate can be found for the present set of jπ  values. If 
this is true for all queries, then the current solution is optimal.  

The overall algorithm proceeds by generating improving sets of slates in this way, then re-solving the LP, until no 
further improvement is possible, or some other heuristic termination criterion is met (such as percentage improvement 
in the objective).  

Column generation extends to the alternate objective functions we have suggested. In particular, if the maximum 
value objective is chosen, we see that the objective function coefficients are:  

k k
p pi j i j p

p
A T

, , ,
⋅∑  (9) 

which must replace ikr  in (7). The function we wish to maximize in this case is then:  

1

1
1

( ) ( )
k

i k
p

k k k k
p p p p

k
p

P
i j

ik i j p i j i j j
p i j

Q
F T A A

Q
π π+

+

,

, , ,
= ,

= ⋅ − ⋅ ⋅∑  (10) 

In much the same way, we may generate columns for the maximum clicks objective by replacing k
pi jA

,
 by 1 in (10).  

The generation of the slate that maximizes the utility function in (8) or the one in (10) is a form of cardinality 
constrained knapsack problem[deFarias 2003], complicated by the ordering requirement and the fact that only certain 
items can be omitted. This problem is amenable to a dynamic programming approach which given the dimensions of 
the problems we are considering here (perhaps a dozen ads chosen from a few dozen candidates) is fast enough to be 
solved many thousands of times in the column generation process. Below we describe network path optimization 
algorithm for this approach. Fuller details as well as a backward recursion dynamic programming algorithm and 
extensions of these algorithms to other application settings are given in [Keerthi 2006].  
3.1. An Optimal Path Approach 

To simplify notations we take one query i  and let m , n  to be the numbers of positions and bidders for that query. 
Define the utility of having bidder j  in position p  and bidder nextj j>  in position 1p +  as  

next

next next
(1 )i j

j j p i j p i j j
i j

Q
u T A

Q
π,

, , , , ,
,

= ⋅ ⋅ ⋅ −  (11) 

For the alternate objective in (10) we just need to redefine u  as next

next next
( )i j

i j

Q
j j p i j p i j i j jQu T A A π,

,, , , , , ,= ⋅ − ⋅ ⋅ . For the 

sake of dealing with the last thn  bidder we define a dummy ( 1)thn +  bidder, and it is the only allowed value of nextj  
for j n= . Then the determination of the optimal slate for query i  to optimize the function in (8) (or (10)) can be 
rewritten as  

1
max

p pj j p
p

u
+, ,∑  (12) 

The problem in (12) can be cast in the form of a longest path problem on a network with nodes j pN ,  for 
1p m= ,...,  and 1j p n= ,..., + , with 

nextj j pu , ,  denoting the utility of going from j pN ,  to 
next 1j pN , + . We also define 

terminal nodes 0 0N ,  and 1 1n mN + , +  with appropriately appended zero utility edges so that the problem transforms to the 
problem of finding the longest path from 0 0N ,  to 1 1n mN + , + . See Figure 1 and Figure 2 for examples. Very efficient 
polynomial time algorithms are known for solving this problem. In our case the problem size is not big and so a simple 



Abrams et al.: Ad Delivery with Budgeted Advertisers 
 

 Page 22

implementation suffices.  
It is also useful to write down a backward recursion dynamic programming algorithm for solving (12). Let 

( )U j p,  denote the optimal total utility of going from node j pN ,  to the terminal node, 1 1n mN + , + . Then we can write the 
recursion,  

next
next

next( ) max ( 1)j j pj j
U j p u U j p, ,>

, = + , + .  (13) 

We can start the algorithm by setting ( 1 1) 0U n m+ , + =  and recurs backwards in j  using (13). Finally, when we get 
(0 0)U ,  we get the solution of (12) as well as the optimal slate.  

 
3.2. Restricted Omissions 

The longest path algorithm that we have just described assumes that any appropriate ordered subset of the ads may 
be chosen which fits within the slate size. In practice this may not always be true. It is normal to allow budgeted 
bidders to be held out of the notional auction—that is excluded from the slate. However, it is not obvious that this 
option should extend to unbudgeted bidders. A business decision may require that unbudgeted bidders not be 
excluded. We therefore require a means of specifying which ads (bidders) can be excluded. We accomplish this by 
specifying a mask or bit vector, which has a 1 if the ad can be excluded and a zero otherwise. We then modify the path 
optimization algorithm as follows. Since each arc in the network gives the utility of including a particular ad i  in 
position p  followed by ad j , we consider only arcs such that:  

1. For each position p  we allow i  to assume the values from p  up to the first ad in rank order which has a 
zero mask bit. Any subsequent ads are ignored for this p . This ensures that the unmasked ad with the 
highest rank is not excluded, but that lower ranked ads which are masked are not considered for the 
position p .  

2. For each i  chosen as above, the second index j  shall only run from 1i +  through the next unmasked 
ad. This ensures that if an ad i  can be followed by an unmasked ad it will be the next in rank order.  

This scheme corresponds to removing certain arcs from the network, or more simply implemented by modifying 
the longest path algorithm with the rules we have itemized. In Figure 3 we show the reduced network obtained from 
Figure 1 when we specify that (1 0 1 0 1)mask = , , , , . In practice however, we use the second technique of modifying the 
algorithm.  
 

 
Figure 1:  Network with n m>  

 



Journal of Electronic Commerce Research, VOL 9, NO 1, 2008 

 Page 23

 
Figure 2: Network with n m<  

 

 
Figure 3: Reduced network with (1 0 1 0 1)mask = , , , ,  

 
4. Model Extensions 

Although we manage to capture a great deal of the complexity of the system, there are still additional aspects of 
the problem which are not present in the proposed formulation. In this section, we expand the formulation to include 
some additional aspects from the real-world setting, and to accommodate alternative pricing functions.  
4.1. Keeping Advertisers Happy 

Thus far, the solution proposed does not adjust on behalf of the experience of any individual advertiser. Here, we 
present an approach for limiting the amount of change experienced by any single bidder.  

Consider we want to ensure that bidder j  receives a price-per-click of at most jl . Then we can add the following 
constraint to our LP :  

( ) 0
k

i i

ijk j ik
i j L k j L

c l x
: ∈ : ∈

− ≤∑ ∑  

This approach is easily adapted to constrain other aspects of the advertiser experience such as clicks received and 
utility. To receive at least jc  clicks, we add the constraint:  

k
pk

i i

ik ji j p
i j L k j L

T x c
, ,

: ∈ : ∈

≥∑ ∑  

To ensure some amount of total utility ju , if we assume the bid is a bidder’s true value for a click, we add the 
constraint:  
 ( )k k

p pk
i i

ijk ik jij i j p
i j L k j L

A c T x u
, ,

: ∈ : ∈

− ≥∑ ∑  

Of course, all these additional constraints may lead to an infeasible LP . To avoid this situation, the jl , jc , or ju  



Abrams et al.: Ad Delivery with Budgeted Advertisers 
 

 Page 24

values could be scaled up or down, respectively, based on their values obtained from some feasible solution (such as 
the solution for the greedy baseline algorithm). Alternatively, the requirements could be increasingly relaxed until a 
feasible solution is found.  
4.2. Campaign and Account Budgets 

It is often the case that a single advertiser is managing many different advertising initiatives simultaneously. For 
instance, a food vendor might have a catering service and also a mail order gift basket service. For each type of service 
the vendor has different advertisements, and different bids and different keywords. We refer each unit of 
advertisement combined with bids on keywords as a campaign. When many campaigns are connected to a single 
advertiser, we refer to the collection of campaigns as an account. An advertiser may have a budget requirement on its 
account, campaigns, or any combination of account and campaigns. The original model has only one kind of 
budget—the jd —which we can consider as the lowest level of budget, i.e. a campaign budget. We now wish to 
superimpose account level budgets, which may constrain disjoint sets of campaigns. To do this, we introduce new sets:  

1{ }  1 2
l

l l
l kC j j l= ,..., = , ,...  (14) 

which are the sets of campaigns belonging to account l .  
We then add account level budget constraints of the form:  

l

ijk ik l
j C i k

c x d l
∈

≤ ∀∑ ∑∑  (15) 

where ld  is the budget for account l . With some matrix and variable manipulation, we can generate the variables and 
constraints in Equation (15) initially, then add on columns as needed.  
4.3. Column Generation with VCG Pricing 

In Section 1, an algorithm is described that finds a violated constraint in the LP from Section 1 in strongly 
polynomial time. This dynamic programming algorithm is based on the GSP pricing scheme [Edelman 2006]. 
Alternatively, a truthful pricing scheme might be used, such as VCG [Vickrey 1961; Clarke 1971; Groves 1973; 
Edelman 2006] or the laddered auction [Aggarwal 2006]. In VCG, the weighted price (meaning the price per click 
times the clickability) bidder j  pays for position p  in slate k  for query i  is:  

1 1 1 1 1( 1) ( 1)( )k k k k k
p p p p p

jpk ij p ij p j j j p kV T T Q A V
+ + + + ++ +

= − +  

For more details on VCG pricing, see [Aggarwal et al., 2006; Clarke 1971; Edelman et al., 2006; Groves 1973; 
Vickrey 1961]. Using these prices, the maximization subproblem from Equation (8) becomes  

1
( ) (1 )

k
i

k k
p p

P

ik jpki j p j
p

F T Vπ π
,

=

= ⋅ ⋅ −∑  (16) 

The slate that maximizes ( )ikF π  can be found using dynamic programming. In the following recursive formula, 
( )U j s V, ,  is the maximum possible revenue if bidder j  is placed in position s  and pays priceV :  

( 1)( ) (1 ) ( 1 ( ) )h j j ijs ihs ih s h hU j s V max T V U h s V T T Q Aπ> +, , = − + , + , − −  
We can start the algorithm by setting ( 1 0) 0U j P j, + , = ,∀  and then recurs backwards, filling in each successively 

smaller position, for all bidders and prices that could potentially fit in that position. If every price is unique, the 
running time of the algorithm will be ( )PnΘ . Or, the recursion produces a pseudo-polynomial algorithm with running 

time 2 max
( )h ih ihQ A
n m δΘ , where δ  is the smallest precision of any value in matrices A , T  and Q . We could 

alternatively have running time 2 max
( )h ih ihQ A
n m βΘ , where we can set β  to any value and assume β -truthfulness 

VCG (ı.e. advertisers don’t have any value in gaming the system for a price differential of less than β ).  
 
5. Dynamic Environment 

Sponsored search operates in a dynamic environment. Bidders come and go, and their bid and budget values can 
fluctuate as well. Query volumes are not fixed, and although they can be predicted with a high level of accuracy, it is 
likely that the traffic stream will not occur exactly as predicted. In this section, we present three enhancements to the 
problem formulation from Section 2. We start with a relatively simple enhancement that assumes future changes are 
known in the current time step. When the assumption that the future is known in advance is removed, we give an 
enhancement that is more complex and more computationally involved, but capable of addressing uncertainty. Finally, 
we describe techniques for managing uncertainty that are less computationally intensive.  



Journal of Electronic Commerce Research, VOL 9, NO 1, 2008 

 Page 25

5.1. Multiple Time Periods 
So far, we have used query volumes to guide our solution, but have not used the order of arrival for these queries. 

It is not realistic to think we might know the exact order of query arrivals in advance. However, there is a temporal 
nature to queries. For instance, there are more queries for pizza delivery at 6pm than at 6am. The temporal aspect of 
queries can play an important role in helping to determine which advertisements to show when. This section presents 
a technique for improving the slate frequency solution by incorporating predictable, time dependent fluctuations in 
query volumes into the LP formulation.  

Here, we assume that bids and bidder landscapes change over time, but these changes are known in advance or can 
be predicted from historical data with a high degree of accuracy. For instance, an advertiser may specify that they will 
pay 1$  for a particular keyword search between 11am and 4pm, and during all other hours, they want to withdraw 
their bid from that keyword.  

To describe and implement this extension, we first expand our notation by adding a t  superscript to indicate the 
time period ( 1t T= ,..., ). Thus, for time period t , we let t

iv  be the query frequencies. The time t  now determines the 

matrix of bids ( tA ), clickabilities ( tQ ), and clickthrough rates ( tT ). The matrices are not simplified to constants over 

all time as in Section 2. The revenue ( t
ikr ) and cost per bidder for each slate ( ijkc ) are constructed using Equations (1) 

and (4), respectively, except now the corresponding tA , tQ , and tT  for time t  are used; let us call these new constants 
t

ikr  and t
ijkc . We rewrite the variables, constraints and objectives from Section 1:  

Variables  
t
ikx   Number of times slate k  is shown in time period t  for keyword i   

Budget Constraints  
 t t

ijk ik j
t i k

c x d j≤ ∀∑∑∑  

Query Volume Constraints  
   t t

ik i
k

x v i t≤ ∀ ,∑  

Revenue Objective  
 Maximize t t

ik ik
t i k

r x∑∑∑  

5.2. Periodic Readjustment 
Our assumption in Section 1 that all changes are known ahead of time is not always true. Despite the best 

predictive tools, the system parameters may change in unpredictable ways, and even if forecasting was 100% accurate, 
the randomness due to choosing a slate randomly, creates some amount of variation.  
To accommodate for unpredictable variation, we can resolve the LP solution throughout the course of the day, and 
update the slate frequencies accordingly. One can either apply an update only at time points when there has been 
significant inaccuracies in the forecast, or, at every time period, say at every 1 hour interval. Although this 
re-computation requires more computational resources, it allows the slate frequencies to adjust to changes in the 
environment as the day progresses.  

More precisely, in hour t , we set rem done( ) ( )j j jd t d d t= − , where rem ( )jd t  is the budget remaining at time t  and 
done ( )jd t  the amount of budget that has already been spent. Similarly, let rem ( )iv t  be the query volume remaining in the 

day for query i . This can be calculated by keeping track of done ( )iv t  the query volume completed till time t  and setting 
rem done( ) ( )i i iv t v v t= − . A more accurate approach, which we use in our simulations, would be to estimate query volume 

for each hour of the day and to set rem ( )iv t  to be the sum over hours left in the day, of the anticipated volume of query 
i  during that hour. Now, at hour t , we use slate frequencies obtained by solving the following modified LP :  
Variables  

ikx   Number of times slate k  is shown for keyword i   
Budget Constraints  
 rem ( ) ijk ik j

i k
c x d t j≤ ∀∑∑  



Abrams et al.: Ad Delivery with Budgeted Advertisers 
 

 Page 26

Query Volume Constraints  
 rem ( ) ik i

k
x v t i≤ ∀∑  

Revenue Objective  
 Maximize ik ik

i k
r x∑∑  

We find that in simulations, resolving the linear program every hour, as opposed to once every day, leads to a 5% 
increase in revenue gains, where the percent increase is over the revenue gain when computing frequencies once a day. 
For more details, see Figures 5 and 4 in Section 4.  
5.3. Approximate Solution via Decoupling  

The approach from Section 2 can be expensive, e.g., if we want to re-solve the full LP  frequently. Here, we give 
a simpler sub-optimal strategy that is cheap to implement. In very simple terms, we use the original LP solution that 
was solved to get the portion of the budget that each advertiser should spend on each query. Then, periodically 
throughout the day, we run an LP for each query, to determine which slates to use just for that particular query, given 
the budget remaining of the portions allotted to that query by the original LP .  

Let us now reformulate an equivalent LP by bringing in new variables for k
i

ij ikk j LD x
: ∈

= ∑ , representing the 

portioned budget of bidder j  for query i . It is necessary to assign these variables only for ij L∈ . The constraints from 
the LP  in Section 1 can be equivalently written as:  
Query-level Budget Constraints  

 
k
i

ijk ik ij
k j L

c x D i j
: ∈

≤ ∀ ,∑  (17) 

High-level Budget Constraints  
ij j

i
D d j≤ ∀∑  (18) 

Query Volume Constraints  
ik i

k
x v i≤ ∀∑  (19) 

Suppose optimal values for the ijD ’s that satisfy this revised LP  are all known. Then the constraints from 
Equation (18) can be eliminated, and the LP  rewritten as a large number of separate, smaller, LPs, one for each query. 
The decoupled LP for a single query i  uses Equations (17) and (19), except ijD  are now constants:  
Query-level Budget Constraints  
  

k
i

ijk ik ij
k j L

c x D i j
: ∈

≤ ∀ ,∑  

Query Volume Constraints 
 ik i

k
x v i≤ ∀∑  

Revenue Objective 
 Maximize ik ik

k
r x∑  

The solution for the above decoupled LP  (i.e., the generation of optimal slates and their frequencies for given 
ijD ) is relatively simple, fast, and easy to implement.  

We can use this decoupling of the LP  to achieve the benefits of periodic adjustment from Section 2 without the 
high computational demands. Let t  denote the time point in the day at which some disruption occurs and we want to 
repair the LP solution. Let us say we have kept track of done ( )ijD t , which is the amount of money spent by bidder j  on 

query i  till time point t  in the day. The remaining budget is rem done( ) ( )ij ij ijD t D D t= − . We rewrite the Query-level 
Budget Constraints:  
 rem ( ) 

k
i

ijk ik ij
k j L

c x D t i j
: ∈

≤ ∀ ,∑  

As bidders come, go and change their values, this decoupling isolates the impact of their changes. Updating 
rem ( )ijD t  to best accommodate the dynamic environment is left as future work (see Section 8).  

 



Journal of Electronic Commerce Research, VOL 9, NO 1, 2008 

 Page 27

6. Practical Considerations for Slate Frequencies 
The column generation algorithm produces fractional values for the variables ijx . In practice, there is no such 

thing as a fractional query. Therefore, we divide slate occurrences by the query volume to produce slate frequencies, 
which we denote as ik

ik i

x
vθ = . Every time a query i  arrives and must be served, we choose to use slate k  with 

probability ikθ .  
6.1. Optimality of Slate Frequencies 

The optimality of our solution is lost when we use the LP variables as slate frequencies3. Still, we find our 
algorithm works well in simulations because, typically, budgets are significantly higher than bids and query volumes 
are relatively large and predictable. Randomly rounding the ikx  variables to integers, according to their fractional 
remainders and such that they still sum to the query volumes, becomes more accurate as the budgets become larger, 
compared with the largest amount spent on any query. And, if the query volumes are also large, then choosing slates 
randomly from a distribution is not too different from choosing precisely that distribution (due to the law of large 
numbers). Also, the use of randomness here creates a more opaque system, which has other advantages such as being 
more difficult for bidders to manipulate.  
6.2. Translating Slate Frequencies into Throttle Rates 

Depending on the architecture of the system, implementing slate frequencies could potentially be involved and 
complex. In some architectures it may be easier to implement a throttle rate (i.e. some rate per query at which eligible 
ads are not considered as candidates for that query), which we denote as ijα . In other words, once an advertiser j  has 
been matched to query i , there is some probability (the throttle rate) that they will actually be withdrawn from the set 
of ads that are returned as matches for that query.  

Slate frequencies are not equivalent to throttle rates. In fact, slate frequencies are strictly more descriptive than 
throttle rates. To see this, let us begin with a probabilistic tree model defined by throttle rates and derive corresponding 
slate frequencies. Recall the notations of section 2 and define ˆ k

iL  to include all bidders that are not throttled for a 
particular slate, including bidders that are not displayed because they are ranked below the cutoff position. More 
precisely,  

 
{ } ifˆ

otherwise

k k k
k i p i i i
i k

i

L j L p P P P
L L

⎧ ∪ ∈ : > =⎪= ⎨
⎪⎩

 

For a given set of throttle rates, we create a slate for every possible subset of bidders and set 

ˆ(1 ) kk
i i

ik ij ijj L j L
θ α α

∈ ∈/
= −∏ ∏ . Using this distribution over slates produces exactly the same outcome as having used 

the given throttle rates.  
However, there is not always a transformation in the other direction. For instance, suppose the slate distribution 

shows bidders ranked 1  and 3  together with probability 5.  and advertisers 2  and 4  together with probability 5. . 
These are the only two slates in the distribution, so advertisers 1  and 2  are never shown together on a slate. However, 
any throttling scheme with a non-positive probability of showing ad 1 and also a non-positive probability of showing 
advertisement 2 , as would have to be the case to replicate this slate distribution, would also have some strictly 
positive probability of showing ads 1  and 2  together. Therefore it is impossible to achieve every slate frequency 
distribution using only throttle rates. Since an exact translation from slate frequencies to throttle rates is not always 
possible, we next explore several heuristics for determining useful throttle rates given slate frequencies.  

Set Throttle Rate =  LP Probability of Display- One possible heuristic for obtaining throttle rates from slate 
frequencies is to simply set the throttle rate equal to one minus the probability that the advertisement is displayed using 
slate frequencies. We have:  

                                                           
3 In fact, as the number of bidders grows, even an integral optimum can be arbitrarily less than the fractional optimum. 
Let C

d
 be the number of bidders each with value C  for being placed in the highest slot for query i  and with budget 

d << C.  There is only one query with one slot. The objective function of the optimum fractional solution has value 
C , obtained by setting each ik

Cx
d

= , where for every bidder there is a slate k  containing only that bidder. In 

contrast, any integral solution has value 0 . 



Abrams et al.: Ad Delivery with Budgeted Advertisers 
 

 Page 28

1
k
j

ikk j L
ij

i

x

v
α : ∈

= −
∑

 (20) 

In practice, this approach works well, providing an increase in revenue that is roughly 98% of the increase when 
slates are used (see section 7 for more details).  

There is the possibility that a simple modification could improve performance even more. The idea behind the 
modification is illustrated by the following example. Consider there are two bidders A  and B  with A  ranked higher 
than B . There is only one query i  that displays one advertisement. The LP displays slate A  half the time and slate B 
the other half of the time. Using Equation (20), 5iAα = .  and 5iBα = . , giving inaccurate corresponding slate 
frequencies. The problem here is that sometimes both advertisements will be throttled. If we use the slate to 
extrapolate which advertisers are throttled, as opposed to which advertisers are displayed, then we can avoid the pitfall 
presented in this example. Using ˆ k

iL  in place of k
iL , we have:  

 ˆ1
k
i

ikk j L
ij

i

x

v
α : ∈= −

∑
 

This new definition sets 5iAα = .  and 1iBα = . The resulting slate frequencies now exactly replicate the LP slate 
frequencies.  

Minimizing Distance to Slate Frequencies- Another alternative heuristic is to find throttle rates that minimize 
some objective function that measures the distance to the LP slate frequencies. We assume the ikθ  are given (using the 
LP), and solve for the jα . Two possibilities include:  
Least Squares  

2

ˆ

( (1 ) )
k k
i i

j j ik
ik j L j L

min α α θ
∈ ∈/

− −∑ ∏ ∏  

K-L Divergence 

ˆ

log
(1 ) kk

i i

ik
ik

ik j jj L j L

min
θ

θ
α α

∈ ∈/
−∑ ∏ ∏

 

These nonlinear optimization problems can be solved using suitable nonlinear programming techniques. Since the 
optimization problems across queries are decoupled, their solution is not very expensive.  
 
7. Simulation Results 

In order to test our approach, we measure its performance in simulations. This section describes our results, as 
well as a number of considerations which must be handled by the simulation4.  
7.1. Query Selection 

Since there are tens of millions, perhaps hundreds of millions, of queries, we are necessarily limited to working 
with a subset of them. Clearly, we wish to deal with a manageable subset which captures a large part of the benefits we 
hope to gain from our optimization algorithm. This is aided by the typical distribution of query volumes, where the 
head queries capture a disproportionate share of the revenue from sponsored search. In confirmation of this, we found 
that in one sample, the top 5000  queries (in terms of revenue) captured a significant fraction of the overall revenue. 
This indicates that even a modest gain for the head queries can lead to a significant overall gain.  

This “cherry picking” can only be achieved at some cost. While it is easy to segment the queries into the head and 
the rest, it is not so obvious how to segment the bidders. We must somehow isolate the bidders associated with these 
chosen queries. Unbudgeted bidders present no problem, but we must take into account the fact that some budgeted 
bidders may have bid on queries in both the chosen head set, and the remainder. We must therefore partition the 
budgets of these bidders into two parts—that spent on our chosen set of queries, and the rest. As a practical matter, this 
is not too difficult; we may base the division on historical data. However, this obviously introduces a measure of 
uncertainty that we would wish to minimize.  

Fortunately, this sort of problem has been considered before. Carrasco et al. [2003] consider the problem of 
clustering a query-bidder bipartite graph corresponding to a sponsored search market. Even more appropriate, 
[Anderson 2007] finds clusters that are isolated (little spend leaves the cluster) and rich (contains a large amount of 
spend). We may consider this a generalization of our present problem of isolating a lucrative head market. Using a 

                                                           
4 The results we report here are based on simulation only and the algorithm presented is not in operation on Yahoo!’s 
production system. 



Journal of Electronic Commerce Research, VOL 9, NO 1, 2008 

 Page 29

variant of the algorithms in [Anderson 2007] we may hope to choose a set of head queries minimally connected to the 
remainder. Having done so, we may then compute adjusted budgets for the budgeted bidders which straddle the 
chosen/non-chosen query set. While this a desirable property, it is not essential to our approach.  
7.2. Column Generation Implementation 

Our prototype system is implemented in C++ to run under Linux (or Cygwin) on an Intel-based work station. We 
use the open source COIN-OR library [Lougee-Heimer 2001] and its LP code Clp [COIN-OR], which allows efficient 
implementation of the column-generation framework and fast updating of the model without the need for any external 
interface. The column generation code itself—both the initial enumeration and subsequent dynamic programming 
subproblem solution—are also implemented in C++. This is economical and avoids compatibility problems, while at 
the same time allowing us, through the COIN-OR interface, to easily use a commercial LP code if we should ever find 
Clp inadequate for our models. So far this has been far from the case. The models on which we carry out most of our 
experiments, using real data on approximately 5,000 queries and about 50,000 bidders of whom about 60% are 
budgeted, are solved to optimality in less than half a minute on a 32-bit Linux box with a 2.8 GHz Xeon processor, and 
in less than 1 minute, even when doubled in size. We therefore expect the algorithm to scale well, even if we re-solve 
at short intervals of, say, 15 minutes.  

Note that the algorithm naturally produces results which are suitable directly for serving with organic query 
results, a task normally performed by the ad server. The ordered slates of ads, and their serving frequencies in 
response to queries, can be used to relieve the ad server of the need to execute the auction process for our chosen set of 
queries. Since we choose from the head queries, this can lead to a significant reduction in workload at the ad server 
itself.  
7.3. Simulation Methodology  

We measure the algorithm’s performance against a greedy “baseline” algorithm, which allocates to a query all 
bidders who have any remaining budget.  

For this evaluation we use a fixed set of 5000 queries, and capture hourly (over an eleven-day period) the bidders, 
bids and budgets for each of the queries in this set. We use predictors of the click-through rates that use historical click 
data for their prediction (the exact details of these predictors is beyond the scope of this paper).  

We used an impression predictor to predict itv , the number of times query i  will appear at hour t  of the day. To 
compensate for the dynamics in impression volumes, we adapt our algorithm as follows: we convert the variables ikx  

to frequencies ik
ik i

x
f v= . Then, for each query instance we use a coin-toss, weighted by the frequencies ikf , to decide 

which slate to show for this query.  
For each algorithm we evaluate, we perform the following steps every hour:  
1. Simulate the keyword auction mechanism for all queries each hour in arbitrary order (the order will not 

matter) according to the algorithm chosen. For the greedy algorithm the auction is performed with all 
candidates that have any budget remaining, while for the LP based algorithms, a coin is tossed to decide 
which slate to show based on the frequencies ikf .  

2. Compute metrics such as revenue, efficiency, clicks and PPC. 
3. Check if any bidder has exceeded their adjusted daily budget. If so, we reimburse those bidders the 

amount they are owed and remove them from participating in future auctions.  
There are several inaccuracies in the simulation. First, due to the hourly granularity, bidders who exceed their 

budget in the middle of a given hour may cause illegitimate price hikes for other bidders. Second, we assume at each 
showing of the slate that we receive exactly the expected number of clicks on each advertisement. In reality, there will 
be some amount of variance and inevitable inaccuracies in the click-through estimates. However, we believe that the 
above inaccuracies are not significant to our results; furthermore, the inaccuracies will have similar affects on both of 
the algorithms, so in terms of measuring relative performance these inaccuracies have little impact.  
7.4. Results 

Our simulation results are quite promising. Whether we optimize for revenue or efficiency, in both cases our 
results show a significant increase in both values. As we would anticipate, we see better performance in efficiency 
when that is the objective function, and similarly for revenue. However, the revenue appears to be more volatile in 
response to the objective function, with a percent increase that roughly doubles, whereas the percent increase for 
efficiency sees roughly a 30% increase. It is also interesting to note that the gains in revenue and efficiency using 
slates, for each day of the simulation, follow similar patterns, peaking and dipping on the same days (as seen by the 
lines labeled revenue/slates and revenue/throttling in Figures 4 and 5). This suggests that the ability to maximize in 
either case is based on similar properties of the problem. We see that revenue and efficiency are closely tied together 
and that gains along one objective imply similar gains along the other.  



Abrams et al.: Ad Delivery with Budgeted Advertisers 
 

 Page 30

 

 
Figure 4: Gains when efficiency is maximized 

 

 
Figure 5: Gains when revenue is maximized 

 
The percent increase in revenue using throttle rates as described in Section 2 is shown by the line labeled 

revenue/throttling in Figures 4 and 5. We observe that the percent increase in revenue is almost exactly the same when 
using throttle rates instead of slates. Interestingly, throttle rates perform slightly worse (in terms of revenue) when 
revenue is maximized but slightly better when efficiency is maximized. This suggests there is a small gain based on 
slates that are carefully and precisely constructed for the objective function. In the case of maximizing efficiency, this 
precision in attaining a small increase in efficiency is to the detriment of revenue.  
The iterative approach shows increased revenue whether maximizing for efficiency or revenue. However, the line 
labeled revenue/iterative in Figures 4 and 5 shows that the increase is significantly more when efficiency is 
maximized.  

Figure 6 shows that the impact on advertisers is favorable, but differs between budgeted and unbudgeted 
advertisers. We see here an interesting distinction: budgeted bidders get a steep increase in clicks with low prices, 
whereas the unbudgeted advertisers receive little increase in overall clicks and a slightly higher PPC. The value also 
increases slightly, although not graphed here. This does not mean that if unbudgeted bidders specify budgets that will 
lead to much increased clicks and lowered prices for them too. It is just that the tightness of the budgets associated with 
the budgeted bidders allows a much larger scope for our approach to improve their values over simple strategies for 
tackling budget specifications. Overall, the impact on bidders appears positive, and is therefore more likely to be 
sustainable.  

 



Journal of Electronic Commerce Research, VOL 9, NO 1, 2008 

 Page 31

 
Figure 6: Impact of the optimization on bidders 

 
8. Conclusion 

Our simulations show that (irrespective of the objective function used) the better scheduling resulting from our 
approach leads to improved aggregate values for the advertisers. Hence their overall response is expected to be 
positive. Still, it is important to understand how individual advertisers might react to our approach, and specifically 
how they will change their bids and budgets in response. While the constraints of section 1 can ensure guaranteed 
values for each individual advertiser, it is not clear if enforcing these constraints would seriously inhibit the LP’s 
ability to increase the objective function. We cannot simply address advertiser incentives by using a truthful pricing 
scheme, such as VCG as described in Section 3, because optimizing over separate truthful auctions does not maintain 
truthfulness of the overall system. An interesting area for future work is to maintain significant increases in revenue 
(or efficiency) while accounting for individual advertiser incentives.  

Another parameter that lies outside our control are query frequencies. We focus on queries at the head of the query 
distribution that can be forecasted with a high degree of accuracy. However, there is also a heavy tail in this 
distribution, and many of these queries are not as easily forecasted as our subset. As described in section 1, when query 
frequencies are unknown, previous research has proposed online algorithms with provable worst case performance 
guarantees. This previous research does not incorporate pricing and ranking into their solution. There may be a way to 
extend the work in [Mahdian 2007] to use our LP as a subroutine. Another approach that does not focus on worst case 
analysis, would be to explore methods such as the one presented in Section 2, to compensate for variation in query 
traffic. It is not yet well understood whether such methods might be able to accommodate changing bids and budgets, 
as well as variable query frequencies. We are also exploring other approaches when query frequencies are unknown, 
including machine learning and stochastic programming.  

Concerning the implementation challenges described in Section 6, it may be possible to find optimal throttle rates 
directly. We do not know of an optimization program for throttle rates that is tractable, and leave this as an open 
problem.  

We may also consider using parallel processing to scale up the approach even further. In particular, instead of 
dividing queries into our chosen set and the rest, we may use an algorithm such as that proposed in [Carrasco 2003] to 
partition the query-bidder graph into multiple submarkets, and apply the budget adjustment method discussed in 
Section 1 to partition the affected budgets and allow parallel solution.  
 
Acknowledgment  

This research was funded by Yahoo!, Inc.  The authors would like to thank Andrei Broder, Arik Motskin, Kevin 
Lang, Ananth Nagarajan, and Jan Pedersen for helpful discussions and advice related to this research.  
 

REFERENCES 
Abrams, Z., “Revenue Maximization When Bidders Have Budgets,” Proc. Symposium on Discrete Algorithms, pp. 

1074-1082, 2006. 
Aggarwal, G., A.Goel, and R.Motwani, “Truthful Auctions For Pricing Search Keywords,” Proc. 7th ACM conference 

on Electronic Commerce, pp.1-7, 2006. 
Alczak, S., D. Gregg, and J. Berrenberg, “Market Decision Making for Online Auction Sellers: Profit Maximization or 

Socialization,” Journal of Electronic Commerce Research, 7, 2006. 



Abrams et al.: Ad Delivery with Budgeted Advertisers 
 

 Page 32

Anderson, R. and K. J. Lang, “Finding Rich Isolated Submarkets in a Sponsored Search Spending Graph,” 
Unpublished Manuscript, 2007. 

Borgs, C., J.Chayes, N.Immorlica, M.Mahdian, and A. Saberi, “Multi-unit Auctions with Budget-constrained 
Bidders,” Proc. 6th ACM Conference on Electronic Commerce, pp. 44-51, 2005. 

Carrasco, J. J., D.Fain, K.Lang, and L. Zhukov, “Clustering of Bipartite Advertiser-keyword Graphs,” Workshop on 
Large Scale Clustering at IEEE International Conference on Data Mining, 2003. 

Chen, M., A.Chen, and B. Shao, “The Implications and Impacts of Web Services to Electronic Commerce Research 
and Practices,” Journal of Electronic Commerce Research, 3, 2003. 

Clarke, E., “Multipart Pricing of Public Goods,” Public Choice, 11:17-33, 1971. 
Dantzig, G. B., Linear Programming and Extensions. Princeton University Press, Princeton, NJ, 1963.  
de Farias, I. and G. Nemhauser, “A Polyhedral Study of the Cardinality Constrained Knapsack Problem,” 

Mathematical Programming (Ser. A), 96:439-467, 2003. 
Dietrich, B. and J. J.Forrest, “A Column Generation Approach for Combinatorial Auctions,” Workshop on 

Mathematics of the Internet: E-Auction and Markets Institute for Mathematics and its Applications, 2001.  
Edelman, B., M.Ostrovsky, and M. Schwarz, “Internet Advertising and the Generalizaed Second Price Auction: 

Selling Billions of Dollars Worth of Keywords,” Second Workshop on Sponsored Search Auctions, Ann Arbor, 
MI. June, 2006. 

Groves, T., “Incentives in Teams,” Econometrica, 41:617-631, 1973. 
Kim, C. and R. D.Galliers, “Deriving a Diffusion Framework and Research Agenda for Web-based Shopping 

Systems,” Journal of Electronic Commerce Research, 5, 2004. 
Lougee-Heimer, R., F. Barahona, B. L.Dietrich, J. Fasano, J. J. Forrest,  R. Harder, L.Ladanyi,  T. Pfender, T. Ralphs 

, M. Saltzman, and K. Scheinberg, “The COIN-OR Initiative: Accelerating Operations Research Progress through 
Open-source Software,” ORMS Today, Vol.28, No.5, 2001. 

Lubbecke, M. E. and J.Desrosiers, “Selected Topics in Column Generation,” Operations Research, Vol.53, 
No.6:1006–1027, 2005.  

Mahdian, M., H.Nazerzadeh, and A. Saberi, “Allocating Online Advertisement Space with Unreliable Estimates,” 
ACM Conference on Electronic Commerce, 2007. 

COIN-OR Foundation:http://www.coin-or.org. 
Sathiya Keerthi, S. and J. A. Tomlin, “Constructing an Optimal Slate of Advertisements,” Yahoo! Research Report, 

2006. 
Schrage, L., “Solving Multi-object Auctions with LP/IP,” University of Chicago, Unpublished Manuscript, 2001. 
Silverstein, C., H.Marais, M. Henzinger, and M. Moricz, “Analysis of a Very Large Web Search Engine Query Log,” 

SIGIR Forum, Vol.33, No.1:6–12, 1999. 
Vazirani, U., A.Mehta, A.Saberi, and V.Vazirani, “Adwords and the Generalized Bipartite Matching Problem,” 

Proceedings of the Symposium on the Foundations of Computer Science, pp.264-273, 2005. 
Vickrey, W., “Counterspeculation, Auctions, and Competitive Sealed Tenders,” Journal of Finance, 16:8-37, 1961.  


