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ABSTRACT 
 

There is a growing recognition that e-market planners and various planning agencies in Information Technology 
sectors have a significant interest in measuring and forecasting the growth of e-commerce.  The difficulties lie in 
finding a forecasting model that can incorporate both internal and external influences on diffusion, as well as an 
acceptable measure for e-commerce growth. This study uses models based on the knowledge of traditional diffusion 
theories as well as artificial neural networks. Additionally, it integrates the two into a hybrid model in order to study 
e-commerce growth. A count of dot-com hosts is used as a reliable measure of e-commerce growth in all the models. 
Our study demonstrates that a simple Neural Network model, if properly calibrated, can create a very flexible response 
function to forecast e-commerce diffusion growth. The neural network model successfully modeled both the internal 
and external influences in the data, while the traditional formulations could only model the internal influences. The 
predictive validation of the results was enhanced by replicating the comparisons on simulated data with various 
degrees of external influence. The study suggests that when external influences are present, the neural network model 
will be superior to the best traditional diffusion model.  
 
Keywords: E-commerce, Dotcom, Forecasting, Neural Network, Diffusion models, and E-market Planning 
 
1.    Introduction 

Studying the diffusion of e-commerce is extremely important for both government and business investors and 
policymakers for effective planning [Press 1997; Yao 2004].  However, industry and academic researchers found that 
measuring, forecasting and tracking the global diffusion of e-commerce faces two hurdles. The first problem is one of 
appropriately modeling the diffusion, both to understand the phenomenon and to forecast the diffusion for planning 
purposes.  The process of innovation diffusion has been extensively researched [Rogers 1983], and several traditional 
diffusion models have been used to explain and forecast the phenomenon. Significant research in the past has used 
such models for the explanation and prediction of the diffusion of different technological innovations – e.g., the Bitnet 
[Gurbaxani 1990] organizational forms [Mahajan et al. 1998], corporate governance mechanisms [Venkatraman et al. 
1994], the Internet [Rai et al. 1998], web-based shopping system [Changsu & Galliers 2004] and so on. These models 
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are therefore a logical first choice in any attempt to understand and forecast e-commerce growth, but they do have 
some limitations. 

The second problem is the difficulty in measuring the growth of diffusion of innovation. For some technological 
innovations, measurement of diffusion can be obvious. For instance, measuring the diffusion of cell phones is simply 
a matter of tracking sales of cell phones or subscriptions. Tracking diffusion of e-commerce is much more difficult. 
One obvious measure, sales dollars, is much less clear, since the portion of sales of each firm attributed to the Internet 
is not precisely tracked by most firms. In Section 2 we elaborate on the issue of e-commerce and the measurement of 
its growth. 

The key idea of traditional diffusion modeling (discussed in greater detail in section 3) is to assume that there are 
a fixed number of potential adopters of new innovations.  Therefore, this adoption process targets a decreasing number 
of adopters as time goes by.  The growth rate of adoption can be constant [Fourt & Woodlock 1960].  [Mansfield 1961] 
proposes that the diffusion process follows a simple logistic curve (s-shaped) over time through imitation.  [Bass 
1969] suggests two main factors that are responsible for the diffusion growth process: imitation (or contagion) and 
innovation. [Mahajan & Muller 1979] later called them internal and external influences.  Despite the popularity of the 
Bass model in explaining the diffusion of innovation of new products, research identified its drawbacks in forecasting 
growth in the near future.  [Heeler & Hustad 1980] point out its instability when data is limited, when there are 
differences in the environment in which diffusion occurs, as well as a systematic underreporting of estimated time to 
attain total number of first purchase sales.  [Golder & Tellis 1997] suggest that the Bass model fails to predict takeoff 
in the growth curve properly.  [van den Bulte & Lilien 1997] point out that the estimation of unknown ceilings of total 
number of adopters is often closer to the number of adopters in the last observation period than it is to reality.  This 
drawback may cause it to seriously underestimate the market potential of new technology. 

Diffusion models, based on the S-curve or its variations – all using a predetermined relationship, are unable to 
account adequately for external factors (government interference, for instance) that may cause sudden changes to the 
diffusion rate. The modeling techniques are inflexible, in that the approach starts with a parametric function selected a 
priori. The calibration process attempts to fit the data by adjusting the values of the shape parameters. If the diffusion 
growth were to stop for a while due to an external factor, the S-curve starts to flatten out without any scope of 
regenerating the growth back into the curve.   

Making the assumption that e-commerce growth has been (and may continue to be) affected by external factors 
like government involvement, security issues, etc., it makes sense to try a more flexible approach to modeling its 
diffusion. Artificial Neural Networks (ANN, or simply NN) is a logical choice for such modeling, since it has two key 
advantages over the traditional methods. Neural Networks are flexible in looking for signals in data as opposed to 
using a predetermined one-dimensional relationship, and it does not require any assumptions about the distributions of 
data. This modeling technique is sometimes called a connectionist approach because of neural-like connections in the 
network.  [Rumelhart et al. 1986] provide a summary of specific types of connectionist networks. [Hecht-Neilsen 
1990] reviews a mathematical treatment of such networks. The applications of NN to a variety of problems are well 
documented [Elman & Zipser 1987; Sejnowski & Rosenberg 1987; Tam & Kiang 1992]. Research showed that 
flexibility and generalization are the two most powerful aspects of NN modeling [Sarle 1995; Wieland & Leighton 
1988] if NN models are designed properly.  NN models are capable of modeling complex patterns in data, and they can 
be combined with other models to further improve prediction performance. [Barnden 1995] discusses the relative 
merits of NN modeling over traditional forecasting methods.   

NN models do not always generalize for many applications when used for prediction in extrapolation unless these 
models are designed properly to fit the application phenomenon [Roy & Mukhopadhyay 1997].  This is because the 
gradient search technique may find a local minimum in the least mean squared cost function instead of the global 
minimum [Lippmann 1987].  Another difficulty with the NN training algorithm is that in many cases the amount of 
training data required for convergence is large.  For many practical applications, such as the current study where NN 
models are used to learn the growth pattern of e-commerce, there needs to exist a mathematical function relating 
correct outputs to inputs with the desired degree of accuracy [NN FAQ 2004] from a limited number of available 
training data.  In order to be a competitive alternative to the traditional models, NN models must achieve at least the 
same degree of accuracy as the traditional ones.  Even with proper specification of the NN models, their performance, 
though promising, has not been shown to be unequivocally superior [Adya & Collopy 1998; Sharda & Patil 1992]. The 
challenge for this research is to overcome these difficulties associated with NN models and show that the models 
generalize well for predicting technological growth in general and e-commerce in particular. 

Our first research objective, then, is to assess whether an NN-based integrated approach is a superior alternative to 
traditional approaches for modeling and forecasting innovation diffusion in general and e-commerce in particular.  
Superior forecasting alone has obvious practical benefits, and if, through simulation one can show that the combined 
model would generally perform better in forecasting innovation diffusion, that would be a significant contribution to 
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research. In addition, the contribution to practice comes from increased confidence in forecasts that lead to better 
planning and policies for both business and government when dealing with the diffusion of innovation. This research 
intends to achieve the first objective through detailed empirical analysis of real e-commerce growth data as well as 
simulated data to determine if the results might generalize further. 

The second objective of this study is to gain insight from theory into why the NN-based models might be superior 
(or inferior) to the traditional diffusion models. Specifically, to examine what can be said about the theory of 
innovation diffusion with respect to the factors influencing the diffusion being investigated.  This objective can be 
achieved by examining existing theory and discussing different diffusion dynamics such as internal influence and 
external influence on the growth process. Our expectation from the literature is that the combination of internal and 
external influences is more likely to be modeled better by the hybrid model (diffusion model and NN) for e-commerce 
growth compared to its traditional counterparts due to the flexibility of NN models, and hence will lead to better 
forecasts overall when both influences are present. In other words, the NN models could offer a more complete 
mathematical representation of the phenomenon of innovation diffusion than traditional S-curves. 

Accomplishing the above objectives will result in significant contributions for modeling e-commerce growth as 
well as the growth of other similar technological innovations.  Most importantly, it would demonstrate that where an 
external influence is present, an NN-based model is better than traditional models, and conversely, if NN-based 
models do not perform differently from traditional ones, one may conclude that the influences on diffusion are purely 
internal in nature. The results of this study provide alternative views of modeling the growth of innovative products in 
general and e-commerce growth in particular.  It would provide a way to handle external and internal influences 
together in the same model.  Success in modeling and capturing the general impact of external factors - such as 
governmental investments; tax policies (e.g., no sales tax on Internet transactions); market movements that inject or 
take away capital infusion to organizations; interoperability and IT standards – would make significant contribution to 
the field of predicting e-commerce growth. 

The rest of the paper is presented as follows. In Section 2 we discuss e-commerce and its measurement. In Section 
3 we examine the diffusion phenomenon and its modeling alternatives in greater detail. Section 4 explains the research 
methodology, while Section 5 summarizes the results. In order to further validate the results, we performed 
simulations that are explained in Section 6. In Section 7 we conclude with a discussion of the implications of our 
findings and provide directions for future research. 

 
2.      E-Commerce Growth and its Measurement 

The measurement of e-commerce growth is complicated by the difficulty in isolating e-commerce activities of 
firms from their other activities. Also, e-commerce is but a part of the more complex Internet economy and it may be 
worthwhile to examine this briefly. A study by [Cisco & the University of Texas 1999] that collected inputs from some 
3000 organizations, classifies the Internet economy into four significant segments: (1) Infrastructure, (2) 
Applications, (3) Intermediaries and (4) e-Commerce.  Each of the four segments normatively consists of companies 
that play a critical role in creating and enabling the Internet economy - creating the Internet backbone, providing 
applications, and Internet commerce and services. 

The infrastructure segment consists of companies that have products and services that help build the IP-based 
network infrastructure [Wang et al. 2004]. Such companies include Internet backbone providers such as Qwest, MCI 
WorldCom to network hardware and software companies such as Cisco, Lucent and 3Com. The second segment 
consists of Internet Applications. Companies in this segment build and provide products and services that build upon 
the first segment of Internet infrastructure and make it possible to perform business activities online over the IP 
network. These companies include Internet commerce application providers such as Netscape, Microsoft, etc., and 
search-engine vendors like Google. Intermediaries, the third segment of the Internet economy, facilitate the meeting 
and interaction of buyers and sellers over the Internet by creating Internet real estate where identification, negotiations, 
and market making activities are carried out for a fee. This segment includes market makers such as online brokerages 
like eBay, and as well as content aggregators like Yahoo. The fourth and the final segment in the Internet economy is 
e-commerce, which includes all those involved in sales of products and services to consumers or businesses over the 
Internet. The players in this segment exist to add economic value to their customers’ (both businesses and consumers) 
otherwise traditional value chain. The interdependence of the Internet segments is illustrated in Figure 1. 

Since merchants and infomediaries can conduct their economic activities only when requisitely enabled and 
supported by the infrastructure and application segments of the Internet economy, it follows that investment in the 
infrastructure influences the level of e-commerce activity. Along this reasoning, [Gurbaxani 1990] and [Rai, et al. 
1998] used number of hosts as a measure of related activity – the former studied the Bitnet, and the latter, the diffusion 
of the Internet. Following their work, we therefore decided on the number of dotcom hosts as a measure for 
e-commerce growth in our study. We define dot-com as any website intended for business use to sell any kind of 
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product or service. In the popular media, the term (or the plural form, dotcoms) may mean web-based businesses, 
referring mostly to ones that failed or suffered cutbacks during the period of March, 2000 to October, 2002. 

 
Figure 1.  Segments of the Internet Economy 

 
3.     Diffusion of Innovation and its Modeling Alternatives 
3.1. The Diffusion Phenomenon 

The adoption of new innovations or technologies generally does not progress in a smooth linear fashion, and 
studies of the phenomenon have focused on explaining the reasons for this. The diffusion rate is defined as the speed at 
which members of a social system adopt the innovation. Innovation diffusion models make two key assumptions 
regarding the phenomenon. First, the existing number of adopters (of the innovation) positively drives the rate of 
growth. Second, the difference between the potential number of adopters at the saturation level and the number of 
existing adopters also influences the rate of growth. Two basic diffusion theories have been used in the literature to 
explain the logic behind these models. First, the diffusion of innovation theory [Rogers 1983], which studies diffusion 
as a process by which an innovation is communicated internally over time among the members of a social or market 
system. That is, the diffusion is caused by internal imitation or contagion. The distribution of adopters is expected to 
be bell-shaped, making the cumulative number of adopters over time an S-shaped curve. This cumulative number is 
expected to grow slowly at first due to uncertainty about the innovation in the early phase, resulting in a relatively flat 
curve in the beginning of the process. If the innovation succeeds, positive feedback fuels the innovation process. The 
adoption rate accelerates rapidly causing a steep curve which levels off later due to saturation. The second, utility 
theory of social networks [Valente 1996], suggests that potential returns from adopting a network depends on the 
number of existing users. This supports the idea of network externalities and this dependence is especially strong for 
computer and telephone networks where the greater the number of users, the greater the value of the network. Once a 
critical mass of membership is reached, it motivates further adoption of the innovation. If we view e-markets as 
networks of buyers and sellers, the existing number of suppliers and users will affect the adoption rate. The take-off 
point of the S-curve represents the critical mass. 

Both the theoretical perspectives mentioned above essentially attribute the diffusion rates to internal causes or 
influences, modeled as a function of the number of existing users and the number of potential users still in the system. 
There is no place in either theory for external factors that may cause the diffusion rate to have sudden spikes upward or 
downward. [Rai et al. 1998], in their study of the diffusion of the Internet as a whole, noted that there was a sudden 
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upward spike in the number of Internet hosts in 1987 when NSFNET switched from 640 KB to the faster T1 lines, 
signaling a significant investment by the U.S. government in Internet infrastructure early in the life cycle. This was 
clearly an external influence on the adoption behavior.  Other kinds of external influences can be brought about by 
government intervention in allowing universal access to any new technology (for example, governments in some 
countries can foster or hinder access and types of access to e-commerce). Technological innovations can support and 
motivate an increased diversity and intensity in e-commerce applications on the Internet. These applications may 
require new levels of inter-operability, standards of communication protocols, and bandwidths. Any breakthrough 
innovation in these areas and in the areas of transactional security, electronic money, or signatures can make 
innovations like e-commerce more desirable to adopters and thus can instigate an external perturbation to adoption 
behavior of the original innovation. The Government can set tax and tariff policies to provide incentives or 
disincentives to accelerate or stifle adoption of a new innovation – both actions are external influences. Detailed 
discussions of external influences are found in the literature – technological innovations, standards, and government 
[Rai et al. 1998]; government and government funded agencies such as NSF, USAID, and standards [Kahn 1994], and 
international and socio-cultural factors [Dutta & Roy 2004]. Although the existence of external influences are known 
and discussed as a practical characteristic of diffusion of an innovation, very little research has been done to model the 
impact of such external influences, and to forecast the adoption rates of innovations that may be affected by them. 
3.2.   Diffusion Models 

Two mathematical specifications of S-curve models – Gompertz and logistic – were used most widely in studies 
of diffusion growth rates [Gurbaxani 1990]. Each model allows for a diffusion growth rate that changes over time and 
with an eventual slowing down to a finite or bounded saturation level.  

[Rai, et al. 1998] also uses the exponential function in addition to the Gompertz and logistic functions. 
Exponential curves assume a constant ratio of growth rate that generally characterizes the early stage of an innovation, 
and do not force a reduction in growth rates like the S-curves. Indeed, their study of Internet growth data (of 13 years, 
from January 1981 - January 1994) reported that an exponential model, with unlimited growth potential (no saturation 
level), outperformed both the Gompertz and the logistic models in characterizing Internet growth. However, as the 
authors of the study admit, this could only be true in the early stages of the diffusion process, and the model would 
eventually overestimate the growth rates.  

While these methods have been appropriate for modeling diffusion that follows some variant of the S-curve, they 
fail to capture external effects on the adoption growth rates. The functional forms of the traditional models are 
discussed in Appendix A. 
3.3.  The Neural Network Model 

The ability of the NN to model complex patterns should make it ideal in dealing with disturbances in diffusion 
data due to external effects. The basic formulation of the NN models is discussed in appendix B. Motivated by its 
robust capability in capturing complex phenomenon we examine two NN based approaches that can be considered 
novel for the purpose of modeling diffusion of innovation:  a pure NN model, as discussed above, and a hybrid model 
that combines the NN model with the best of the traditional ones. To find the best of the traditional models we first 
examine all three – Gompertz, logistic, and exponential – individually. Our motivation behind examining the hybrid 
model is to see whether it is beneficial to combine the logic of both modeling approaches.  
3.4. The Hybrid Model 

It is usually beneficial to combine forecasts from different forecasts [Russell et al. 1987]. Putting equal weights on 
methods to combine is not recommended. Statistician’s recommendation is to weight the forecasts from different 
methods by the inverse of individual methods MSE [Armstrong 2001 p.423]. The method essentially minimizes the 
expected forecast error variances. It works best when the biases (direction of forecast – forecasting high or low) of the 
methods are in different direction. We, therefore, combined the two approaches (or methods) as follows: 

NFM,tЄT = ∑mЄM (Wm,t * Fm,tЄT)        (1) 
Where, 
C(t)  is the calibration time horizon 
T(t)  is the forecast time horizon in future 
m  is the forecasting method 
M  is the total number of forecasting methods being combined 
Fm,tЄT  is the forecast from method m for tЄT 
NFM,tЄT is the new combined forecast from M number of methods for tЄT 
Wm,tЄT is the weight on the forecast from method m at tЄT or  

Wm (since weights were not varied at tЄT) and is given by: 
Wm = (1/MSEm,C) / (∑mЄM (1/MSEm,C))       (2) 
MSEm,C = (∑tЄC (Fm,tЄC – ytЄC)2)/NC       
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ytЄC is the actual value of dot-com counts over calibration horizon at time t in C 
NC is the number predictions in C 
Fm,tЄC is the forecast from method m for tЄC 

Equation (2) determines the relative weights of the two basic models in creating the hybrid model on the basis of 
their MSE values. The lower the MSE of a model relative to the other, the greater the weight it receives. If one of the 
models outperforms another strongly, it may receive a weight close to 100%, discarding the weaker model.  
 
4.    Research Methodology 

We used the number of hosts in the dot-com domain as a measure of the diffusion of e-commerce infrastructure 
growth, consistent with the literature on diffusion studies involving the Bitnet [Gurbaxani 1990] and the Internet 
[Press 1997; Rai et. al. 1998]. We collected the total number of live Internet sites in the dot-com domain worldwide 
from August 1995-July 2004 from the reports published by Netcraft on their web site www.netcraft.com [Netcraft, 
2004].  Netcraft collects all the names of hosts that they can find on the Internet, and polls them with a request for the 
server name. In July 2001, for instance, there were 31,299,592 live sites (those that responded to electronic ‘pinging’), 
of which 17,360,176 were dot-com sites. Since there can be multiple sites on the same machine or multiple machines 
used for a single popular site, Netcraft’s count represents different domain names rather than the number of computers.  

A two-step methodology was used to compare the predictive utility of the models.  In step one, we calibrated our 
models – Gompertz, logistic, and exponential - on time-series data from August 1995 to July 2001.  We then used the 
next eighteen months of data (August 2001 to January 2003) to validate the traditional diffusion models. The size of 
the test sample (typically about 20% of the total sample) is in line with recommendation from previous literature 
[Bishop 1995]. We built a multi-layered perceptron neural network model (which we will refer to as the ‘pure NN’ 
model, to distinguish it from the hybrid) to predict e-commerce growth on the same calibration sample. The best 
diffusion model based on its performance on both calibration and step one test samples and NN model were then 
selected for further analysis in step two.  

In step two we combined the best step one diffusion model with the pure NN model to generate a hybrid model.  
We compared the forecasting performances of these three models - the best diffusion model, the pure NN model, and 
the hybrid model - on a larger test sample (August 2001 through July 2004), using the root mean squared error 
(RMSE) as a performance measure.  RMSE is the preferred performance measure when different methods are 
compared for decision making [Armstrong & Collopy 1992; Carbone & Armstrong 1982]. 
 
5.    Results and Analysis 

An inspection of the dot-com host count data (Figure 2) shows the existence of external influences in e-commerce 
diffusion. While S-shaped curves are well-established for modeling diffusion due to internal causes, they are perhaps 
not sufficient to model diffusion that includes external influences. The cumulative numbers show resemblance to an 
S-curve, but also show enough deviation from the S-shape about half-way through, where there is a significant drop in 
the count. 

 
Figure 2. Growth Rate of Dotcom Hosts 
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Until the end of year 2000, growth seems to be exponential in nature, fitting the traditional expectations. 
However, towards the end of 2000 and early in the year 2001, there is actually a drop in the host count when traditional 
models would have forecasted continued growth, albeit at a diminished rate, to represent the upper half of the S-curve. 
Thus it seems that for this phenomenon, attempting the more novel NN approach might be justified. 

 
5.1.  Step 1 Results 

Three traditional models, Gompertz, logistic, and exponential, were fitted to the data. Table 1 summarizes the 
resulting parameters. All parameters were found to be significant at a p value of 0.01 or better. 

 
Table 1.  Parameter Estimates of Diffusion Models and Performance on Step 1 Test Data 
Model Parameter Parameter 

Estimates 
(n=72) 

R2 
 

Saturation 
Limit (SL) 
in # of 
dot-com 
sites 

Inflection 
Point 

RMSE on Step 1 
Test Data (n=18) 

GOMPERTZ K 
A 
B 

70,861,752 
0.0000022746 
0.96895 

0.985 70,861,752 May 2002 
or 

26,068,582 
hosts 

9,447,477 
 

LOGISTIC K 
A 
B 

0.00000004217 
0.00005910663 
0.89025422613 

0.991 23,696,682 September 
2000 or 

11,848,341 
hosts 

3,663,877 
 

EXPONENTIAL A 
B 

2,758,485 
0.2349639 

0.974 No limit None 578,176,193 
 

p < 0.01 for all parameters for all 3 traditional models 
 

The Gompertz model (R2 equals 0.9856) predicts an approximate saturation level of 70.86 million dot-com sites. 
As of July 2004, the host count had reached a little over 25 million sites. The model also indicates an inflection point in 
May 2002. This means that the rate of dot-com site growth started to decrease sometime during the middle of 2002. 
The Logistic model (R2 equals 0.9911) predicts an approximate saturation level of 23.7 million dot-com sites, with the 
inflection point at September 2000. The Logistic model is thus a less optimistic model than the Gompertz model in 
estimating the e-commerce growth. The exponential model (R2 equals 0.9744) and has no saturation point. It is 
therefore, perhaps, too optimistic at this stage.  

The last column in Table 1 shows the RMSE for all diffusion models on the test sample. The logistic model 
outperformed the others with the lowest standard error of forecasts (3,663,877). The logistic model was therefore 
chosen to be combined with the NN model to develop the hybrid model.  

The parameter estimates for the pure NN model are shown in Figure 3. T_hu1, T_hu2 and T_hu3 are the estimated 
final weights from input node T to hidden units 1, 2, and 3 respectively.  Hu1_ldotcom, Hu2_ldotcom, Hu2_ldotcom 
are the estimate weights from hidden nodes 1, 2, and 3 respectively, to the output node.  The weights are sufficiently 
large, indicating that this model does not need any pruning.  The NN model converges after 52 epochs with the 
objective function (sum of the absolute deviations among sample points) value of approximately 0.014. Since NN is 
treated as a nonparametric technique it does not provide a statistical test of the estimates with p-values. The NN model 
has smaller RMSE (271545) than that of the logistic model (500842) in the calibration data. The pure NN model 
showed a much smaller RMSE (1,983,596) than that of logistic model (3,663,877) on the step 1 test sample, indicating 
its superior generalization power. 
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Figure 3.  Parameter Estimates (weights) of the Pure NN model 
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Figure 4.  Forecast Performance of Models on Step 1 Test Data 

 
Figure 4 is the graphical representation of the forecast performances of Gompertz, logistic and NN models on the 

test data. The graph does not contain the exponential model forecasts because of its inferior outlier performances. 
Among the other three models pure NN clearly outperforms other models right from the beginning of projection in 
future. The NN forecasts stay much closer to the actual values indicating its strength in finding the actual pattern.  
 
5.2.  Step 2 Results 

The hybrid model combined the logistic and pure NN model. Based on equation (2), more weight (77%) was 
assigned to the pure NN model in the hybrid than to the logistic (23%), due to the lower Mean Squared Error of the 
former. The weight for the pure NN was computed as follows:  

Weight = [1/(271,545)2]/[1/(500,842)2 + 1/(271545)2] = 0.77.   

I 

Input node 
T=t 

Sigmoidal 
activation Hidden Nodes  

Weight: -6.623 
Bias: -10.199 Weight: -5.613 

Log transform of forecast of 
hosts at T=t 

Output Node 
Sigmoidal 
activation  

Weight: 3.424 
Bias: -2.874 

Weight: 2.899 
Bias: 1.899 

Weight: 2.317 

Weight: 2.247 

Bias: 12.232
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Table 2.   Forecasts and Performances on Test Data 

Time 
Period Actual Neuro Forecast Logistic Forecast 

Hybrid 
Forecast  

Aug-01 17,235,786  17,824,311  18,384,238  17,951,513  
Sep-01 17,365,774  18,090,604  18,847,962  18,262,657  
Oct-01 19,132,713  18,322,692  19,280,929  18,540,381  
Nov-01 20,366,078  18,524,227  19,683,467  18,787,579  
Dec-01 20,384,282  18,698,676  20,056,238  19,007,082  
Jan-02 20,531,644  18,849,268  20,400,183  19,201,599  
Feb-02 20,348,680  18,978,960  20,716,461  19,373,679  
Mar-02 19,885,475  19,090,430  21,006,396  19,525,692  
Apr-02 18,916,155  19,186,073  21,271,426  19,659,816  
May-02 19,050,774  19,268,016  21,513,061  19,778,037  
Jun-02 19,920,759  19,338,133  21,732,844  19,882,155  
Jul-02 19,920,759  19,398,067  21,932,320  19,973,790  

Aug-02 17,020,981  19,449,251  22,113,011  20,054,395  
Sep-02 16,801,016  19,492,929  22,276,395  20,125,267  
Oct-02 16,262,099  19,530,176  22,423,894  20,187,560  
Nov-02 16,351,780  19,561,923  22,556,858  20,242,301  
Dec-02 16,257,170  19,588,968  22,676,564  20,290,397  
Jan-03 16,182,460  19,611,999  22,784,207  20,332,649  
Feb-03 16,246,764  19,631,605  22,880,899  20,369,768  
Mar-03 18,881,867  19,648,290  22,967,674  20,402,376  
Apr-03 19,352,895  19,662,487  23,045,481  20,431,023  
May-03 19,522,713  19,674,564  23,115,194  20,456,194  
Jun-03 19,801,741  19,684,836  23,177,612  20,478,312  
Jul-03 20,140,894  19,693,571  23,233,464  20,497,751  

Aug-03 20,374,593  19,700,999  23,283,414  20,514,839  
Sep-03 20,589,513  19,707,314  23,328,063  20,529,863  
Oct-03 21,007,030  19,712,684  23,367,956  20,543,075  
Nov-03 21,429,043  19,717,248  23,403,586  20,554,697  
Dec-03 22,087,096  19,721,129  23,435,398  20,564,923  
Jan-04 22,259,616  19,724,427  23,463,791  20,573,922  
Feb-04 22,789,874  19,727,231  23,489,126  20,581,844  
Mar-04 23,252,673  19,729,614  23,511,726  20,588,821  
Apr-04 24,215,135  19,731,640  23,531,883  20,594,965  
May-04 24,750,693  19,733,362  23,549,857  20,600,379  
Jun-04 25,369,906  19,734,825  23,565,882  20,605,151  
Jul-04 25,610,489  19,736,069  23,580,166  20,609,357  

BIAS 615,009 -2,221,408 -29,358 
RMSE 2,551,650 3,284,572 2,428,921 
Weight used in hybrid  0.77 0.23   

 
The relative performances of the three models – logistic, pure NN and the hybrid model on the test data set 

(August 2001 to July 2004) are shown in Table 2. It is evident that pure NN forecasts are superior to logistic forecasts 
(RMSE: 2,551,650 and 3,284,572 respectively).   However, the hybrid model was the best (RMSE:  2,428,921).  
Paired sample t-tests showed statistically significant differences in forecast accuracy (p < .01) between the pure NN 
model and the logistic, as well as between the hybrid model and the pure NN.  The eta squared statistic also indicated 
a large effect size [Cohen 1988]. In summary, the results indicate that the pure NN model is superior to the logistic 
model (and hence the Gompertz and exponential models also) in forecasting e-commerce growth. The hybrid model 
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performed the best of all. 
The results seem to support the argument that the more flexible approach of a neural network model is better than 

the conventional models for forecasting innovation diffusion, especially when there is cause to believe that external 
factors perturb the diffusion phenomenon. However, this represents the results from one actual dataset. The validation 
of the current study is further strengthened by conducting a simulated experiment that compares the models across 
various datasets that are created to systematically examine the effects of different types of disturbances in the growth 
data. Specifically, one must consider four characteristics of the external effects: magnitude, direction, stage of the life 
cycle of diffusion, and type of S-curves. This research focused on the magnitude of the disturbance, keeping the other 
three invariant. 
 
6.    Simulation 
6.1. Simulation Data 

To further strengthen the validity of the new approach to model diffusion of e-commerce we generated five 
different variations of S-curve data, each with 100 observations. The first set (series 1) of 100 data points represent the 
baseline case of no external effects, thus presuming that only internal (contagion or imitation) factors affect the 
diffusion rate. The numbers can be seen as a fictitious set of the cumulative number of dot-com hosts in millions. 
Consistent with the theory regarding diffusion due to internal factors, the numbers form an S-curve with some random 
noise.  The second set (series 2) of 100 numbers began as in the first, but had a 5% jump in the values starting around 
the inflexion point. The third, fourth, and fifth sets (series 3, 4, and 5 respectively) were similar to the second, but with 
increasing magnitudes of the spikes. They had spikes of 10%, 15%, and 20% respectively, in each case starting at the 
same time period.  We used the first 80 points for calibration and the next 20 for validation.  
6.2. Simulation Results and Analysis  

The forecasts and RMSE of two of the models – logistic and pure NN – on the test samples for each of the five 
series are shown in Table 3. For the simulated data, the relative performance of the logistic regression compared with 
the NN was poor enough to give it a weight of almost 0. Thus, the forecasts of the hybrid model were essentially the 
same as those of the pure NN model.  Table 3 therefore does not show the forecasts from the hybrid model separately. 
 
Table 3.   Forecasts and Performances of Best Models on Simulated Test Data  

s1-s5: Simulated Test Data Points; LF = Logistic Forecast; NF = Neural Forecast 
T s1 LF NF s2 LF NF s3 LF NF s4 LF NF s5 LF NF 
81 1040 1028 1053 1065 1053 1045 1091 1078 1072 1116 1104 1126 1141 1129 1150 
82 1051 1035 1061 1076 1061 1054 1101 1086 1081 1127 1111 1134 1152 1136 1158 
83 1062 1043 1070 1087 1068 1062 1112 1093 1089 1138 1118 1142 1163 1142 1166 
84 1072 1050 1078 1097 1075 1071 1122 1099 1097 1148 1124 1150 1173 1148 1174 
85 1082 1056 1085 1107 1081 1079 1132 1106 1105 1158 1130 1157 1183 1154 1181 
86 1090 1063 1092 1116 1087 1086 1141 1111 1113 1166 1135 1164 1191 1159 1188 
87 1099 1069 1099 1124 1093 1093 1150 1117 1120 1175 1141 1171 1200 1164 1195 
88 1108 1074 1106 1133 1098 1100 1158 1122 1127 1183 1145 1177 1209 1169 1201 
89 1117 1079 1112 1142 1103 1107 1167 1127 1133 1192 1150 1183 1218 1173 1207 
90 1123 1084 1119 1148 1108 1114 1173 1131 1140 1199 1154 1189 1224 1177 1213 
91 1129 1089 1124 1154 1112 1120 1179 1135 1146 1205 1158 1195 1230 1181 1219 
92 1135 1093 1130 1160 1116 1126 1185 1139 1152 1211 1162 1200 1236 1185 1224 
93 1141 1097 1135 1166 1120 1131 1191 1143 1157 1216 1165 1205 1242 1188 1229 
94 1146 1101 1140 1171 1124 1137 1196 1146 1163 1222 1169 1210 1247 1191 1234 
95 1151 1105 1145 1177 1127 1142 1202 1150 1168 1227 1172 1215 1252 1194 1238 
96 1156 1108 1149 1181 1130 1147 1206 1153 1173 1231 1174 1219 1256 1196 1243 
97 1159 1112 1154 1185 1134 1152 1210 1155 1178 1235 1177 1223 1260 1199 1247 
98 1163 1115 1158 1188 1136 1157 1213 1158 1182 1239 1179 1227 1264 1201 1251 
99 1166 1117 1162 1191 1139 1161 1216 1160 1187 1242 1182 1231 1267 1203 1255 

100 1167 1120 1166 1193 1141 1166 1218 1163 1191 1243 1184 1235 1268 1205 1258 
                

RMSE   38 6  40 31  42 30  44  9   47  10  
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The difference between the RMSE values for the NN model and the Logistic model is very high for each of the 5 
simulated datasets, with the NN model outperforming the logistic in every case. 

When applied to the sharp increase in the dot-com host count growth around the inflexion point in each of the 
simulated datasets, the logistic model smoothes out the spike by fitting the curve through it as best as possible, thus 
beginning to underestimate the total population of adopters past the spike point.  The value of shape parameter B 
(equation A.2) does not adjust fast enough, which results in underestimation.  Pure NN on the other hand, can adjust 
immediately through adaptive weight updates in weight matrix Ŵ (equation B.1) to reflect the continuation of the 
diffusion after the spike. This phenomenon is illustrated in Figure 5 using a portion of the series 5 data around the 
spike.  The spike occurs at time period 48 (shown in square box).  The pure NN model immediately adjusted after one 
period during calibration.  However, the logistic model could not respond to the spike. Interestingly, the pure NN 
model also outperformed the logistic even on the baseline data that had random noise, but no spike. 

 

 
Figure 5: Logistic and Pure NN Estimates Around Spike in Series 5 Calibration Data 
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This ability of the pure NN model to adapt to the spike in data results in better forecasting performance on the test 

data, as shown in Figure 6.   
The pure NN model performed extremely well compared to its traditional counterpart on simulated data.  

However, on the actual e-commerce data, while the pure NN model outperformed all the S-curves significantly, the 
hybrid model performed the best, indicating that there is still a place for the traditional models in conjunction with an 
adaptive NN. 

We simulated “drops” (5%, 10%, 15% and 20%) in a similar way instead of “hikes.” As expected, NN did better 
than LL on all four simulations validating NN model’s superiority further in predicting e-commerce growth.    
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Figure 6.  Logistic and Pure NN forecasts on series 5 test data 

 
7. Conclusion 

This paper makes a contribution to e-commerce research by suggesting a novel approach to model its diffusion. 
The internal or imitation influence is well understood in the literature. Several studies discuss the idea of imitation 
behavior and its effect on the diffusion of an innovation. The mathematical representations vary from models of 
diffusion without imitation [Coleman et al. 1966], to models with [Mansfield 1961; Bass 1969]. The imitation models 
are variants of S-curves.  External influences are largely ignored when it comes to modeling. This is perhaps because 
external effects can be domain-sensitive or occur at any stage of the life cycle.  Random occurrence of external effects 
causes problems in modeling e-commerce diffusion process with any pre-determined mathematical relation such as an 
S-curve. The mathematical models that fit S-curves to diffusion data thus essentially treat external perturbations as 
random error. These random errors reduce the accuracy of the forecasts of these models. 

Our approach will be useful for most other innovation diffusion modeling studies in the future as long as there is 
some theoretically informed argument that external influence is suspected.  This is because the modeling logic for our 
work here was grounded in the theories of innovation diffusion and neural networks (section 1.1). The model 
development was further enhanced by the simulation-theoretic approach (section 6.1). Diffusion theory motivated the 
search for an approach that would identify the presence of external effects in data, while the theory of neural networks 
provided the architectural reason why NN models are more apt to capture non-linear complexities. Additionally, the 
simulation experiments helped us go beyond the specific innovation of e-commerce towards more general ones. The 
simulations conducted in this study varied the impact of the external effects on diffusion. Neural networks performed 
better in each case, enabling us to argue that any innovation diffusion (not just e-commerce) that has significant 
external effects will be expected to benefit from this approach. Secondly, the model will hold up over time within the 
usual limitations of any empirically calibrated model. As [Somers 2001] points out, generalizability of NN models is 
assessed with the use of a test sample (a hold-out sample).  

Our approach, therefore, captures internal (imitation) influences and also external influences if present. In other 
words, our method is suitable when the diffusion phenomenon is either a single influence or a mixed influence one. 
Traditional models are at best weak mixed influence models.  Consequently, one would expect the forecasting 
performance of an NN based model for any innovation would either match or when external influence factors are 
present, surpass the traditional models. However, this claim needs to be tested for different innovations in the future, 
and will help refine the theory of innovation diffusion. When an NN model surpasses a traditional model it will signal 
that in all likelihood an external influence is present, which requires further investigation. Conversely, if managers and 
researchers dealing with e-commerce and other diffusion processes foresee that a particular innovation is especially 
susceptible to external influences, then they will find the results of this research extremely useful in anticipating and 
understanding such innovation diffusions. Overall, the pure NN method shows a lot of promise in forecasting 
diffusion and understanding the contributing factors. 
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E-commerce can be viewed as an IT innovation adopted by organizations. Economic theory suggests that 
organizations will adopt an innovation which cannot be protected from the competitors (by using some form of patent 
or other market barriers) when the innovation brings in increased profit and does not increase much risk. Additionally, 
as the adopters of the innovation start benefiting from the innovation, their superior performance can give reasons to 
others to imitate and adopt the innovation [Mansfield 1961, Rogers 1983]. However, such theoretical expectations 
may not necessarily come true in all actual innovation diffusions. For instance, [Mahajan et al. 1988] reported only 
white noise (thus no imitation influence) explaining adoption of a particular form of organizing.  They concluded that 
the superior performance due to the innovation was not effectively visible to other organizations. The other 
organizations were either not convinced of the causal connection between the innovation and the superior performance 
of the adopter, or the innovation was too difficult to adopt. Some innovations are also subject to external perturbations 
which make the innovation phenomenon more complex to understand. Thus to develop a fuller understanding of why 
a particular innovation has spread and how it would spread in the future, each innovation has to be assessed anew to 
identify and study the types of influences that have caused its spread. 

The presence of imitation influence indicates that e-commerce as an innovation did not suffer from lack of 
visibility. There were imitating adopters who expected a causal connection between e-commerce adoption and 
superior organizational performance. Adopting e-commerce as a way of doing business was not perceived to be 
challenging to organizations. This supports the notion that organizations adopted e-commerce to mimic other 
successful adopters. This, however, is not the complete picture.  External factors also made a difference in the way 
e-commerce grew. Such factors include governmental investments, tax policies (e.g., no sales tax on the internet 
transactions); market movements that inject or take away capital infusion to organizations; interoperability and IT 
standards. The finding that e-commerce diffusion, influenced by significant external influences, should be modeled as 
a mixed-influence model phenomenon is an important and new step in e-commerce research. Similar contributions 
helped guide future research in other fields. In the human resource management [Somers 2001] concludes in his paper 
that although the common view of NN is that of predictive improvement only, his study shows that it can in fact be 
used to develop a new understanding of the relationship between work attitudes and job performance. For future 
research in e-commerce, this means setting up experiments that are designed to separate the influence categories, 
identify the specific factors within each, and study their relative contributions to the growth phenomenon. All such 
assessments will sharpen the theoretical understanding of e-commerce diffusion and planning policies that can 
prioritize and target external factors. 
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APPENDIX A 

Diffusion Model: 
 Traditionally, diffusion has been specified by three basic models: internal-influence, external-influence, and 
mixed-influence (Venkatraman et al. 1994).  Mixed influence model (Bass 1969) represents both internal and external 
influences in the growth process: 
   dYT/dt = (p + q YT)(K – YT)    (1) 

where K is the potential number of adopters of innovations, YT is the cumulative number of adopters at time 
period t, p is the coefficient of external influence, q is the coefficient of internal influence.  Cumulative distribution of 
the mixed-influence model gives rise to a generalized logistic curve whose shape depends on the coefficients p and q. 
 
Gompertz Model: 

This is a special case of generalized logistic curve.  The rate of diffusion is a function of existing adopters and 
the difference between the logarithms of the number of adopters at the saturation level and the existing number of 
adopters: dy/dt = f{y*(log ysaturation – log yexisting)}. 
                                                 YT = KAM      (2) 

M is equal to BT in (1).  For 0<A<1 and 0<B<1, YT is an increasing S-curve which reaches the upper bound or 
the saturation point of K (total number of adopters of the innovation) as time T approaches its theoretical limit of 
infinity. This curve reaches its inflection point (i.e., the point in the S-curve where the diffusion growth reaches its 
maximum rate and then switches from an increasing rate to a decreasing one) at YT=K/e (37% of its saturation level) 
where e is the Euler’s constant. 

 
Logistic Model:  

This model has a similar structure as above except that it does not use the logarithmic form of the number of 
adopters. Thus, the rate of diffusion is expressed as dy/dt = f{y*(ysaturation – yexisting)}. This relation leads to the 
following integral form: 
    Yt = 1/(K + A*M)     (3) 

For A>0 and 0<B<1, YT is an increasing S-curve which reaches the upper bound or the saturation point of 
1/K as time T approaches its theoretical limit of infinity. This curve reaches its inflection point at YT=K/2. That is, the 
inflection point occurs when YT reaches 50% of its saturation level. 

 
Exponential Model: 

Unlike the above two, this model is characterized by a constant ratio of growth.  It takes the following integral 
form: 

                                    Yt = A + eBT       (4) 
For B>0, YT is an ever increasing growth function that reaches infinity as T approaches its theoretical limit of 

infinity. 
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APPENDIX B 
NN Model: 

The equivalent nonlinear regression model form of one hidden feed forward neural network is as follows: 

+=+ hhty ,
^^

log φβ ∑
=

n

j 1
hj,

^
β  f ( It , )     (1) jhw ,

^

where, It is the input vector of current time period value. The parameter h is the forecast horizon.  Ŵh,j is the network 
weight vectors corresponding to forecast horizon h and jth hidden node.  This research used the logistic form of 
transfer function f at each node: 

f ( It , ) = (1+e-z )-1        (2) jhw ,
^

where, 

z =  t.     +φ,,
^

jhw jhw ,

^

These logistic activation functions (equation 2) of the multi-layer perceptron (MLP) nodes introduced nonlinearity in 
the model.  The number of hidden nodes is n.  There are many methods in AI literature that can be used for flexible 
nonlinear modeling.  We used a Multi-layered Perceptron (MLPNN) trained by a back-propagation (BP) algorithm 
(Rumelhart et al., 1988) to examine the e-Commerce growth process. We employed the stopped training method 
(Sarle 1995) to avoid overfitting or memorization in the calibration (training) samples.   
  The BP training algorithm is a supervised learning technique where the values of the independent variables 
along with the values of the dependent variables are fed to an MLP network input layer.  The MLP network has a layer 
of input nodes, one or more layers of hidden nodes, and a layer of output nodes.  The nodes of the first hidden layer are 
connected with the input layer nodes.  The nodes of the output layer are connected with the last hidden layer nodes.  
The values assigned to connections between nodes are called “connection strengths” or “weights.”  The output of each 
node in an MLP network, sometimes called an “activation value,” is a function of the inputs from the connecting nodes 
of the previous layer to itself and the corresponding weights.  The function is called the “activation function.”  The 
outputs of the input layer nodes have the values of the input variables.  The task of an MLP network is to extract the 
functional relationship between the input variables and the dependent variable, called “target”, through proper 
assignments of weights.  The output layer units represent the values of the target variables.  An MLP uses the 
information available from the independent variables for each observation in the training set to compute an output 
value.  The output value is then compared with target value to generate error signals for all units.  There will be no 
error signal if there is no difference between the two values.  Otherwise, the training involves a backward pass through 
the network during which error signals are sent to all units in the network.  Weight changes in network connections are 
proportional to the error signals.  In this procedure, the constant of proportionality is called the “learning rate.”  The 
larger this constant is, the larger are the changes in the weights in each step. 
The main advantage of MLP over traditional diffusion models is its flexibility in creating nonlinear boundary surfaces 
that separate different predictive values in multidimensional input space.  Nonlinearity comes through the activation 
functions (2) of the nodes. 

Three layers of MLP neural network were used; one input layer for input variables (time), one hidden unit 
layer, and one output layer.  Three units were used in the hidden layer (n=3 in equation 1).  One output unit was used 
in the output layer.  The input node was connected to all the hidden nodes to represent the values of the target 
variables.  The hidden nodes were in turn connected to the output node.   


