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ABSTRACT 

 

Semantic matchmaking systems are not successful in identifying the differences between users’ interests. To 

address this weakness, we develop a user-oriented and personalized system to evaluate the offers that match the 

user’s request. Our system evaluates and ranks the offers according to the user’s specific interests to bring better 

results to each individual. The best offer represents the maximum satisfaction of the user. The proposed system 

extracts and analyzes the user’s interests for multiple offer attributes. To evaluate the offers, we adapt the well-

known economic model MultiNomial Logit to the field of semantic matchmaking. We show the benefits of our offer 

evaluation system through a detailed case study involving multiple, high-dimensional, concept and value-based 

attributes. In this study, we show how our system catches the differences between the purchasing interests of two 

buyers, and how it recommends a different best offer to each buyer. Furthermore, we assess the feasibility of the 

proposed system with a transport usage dataset. The experiment results demonstrate that our system can provide 

good result for each individual. 

 

Keywords: MultiNomial Logit model, clustering technology SOM, semantic matchmaking, interest model, high-

dimensional offer attributes. 

 

1. Introduction 

Semantic matchmaking is one of the most important processes of e-commerce. Nowadays with the blooming of 

e-commerce and e-services, users may obtain a large number of request-matched offers. It is really time consuming 

for users to evaluate and sort the entire candidate offers in order to find the best offer. Returning a ranked list of 

offers is a very important task for semantic matchmaking systems. And recent matchmakers [Di Noia et al. 2007a, 

Di Noia et al. 2007b, Bener et al. 2009, Skoutas et al. 2010] realize this importance.  Our research work has the 

same goal as matchmakers: rank the offers to determine the best offer. As illustrated in Figure 1, we are not 

improving any matching work but only the ranking work for the matchmakers. Semantic matchmakers usually rely 

on common, standard ontologies to match and rank the offers. However in each domain, each individual may have 

different knowledge background i.e. different ontology to judge the offers. Using a common and public ontology 

does not take into account the users’ differences.  Furthermore, changes in the users' interests cannot be expressed in 

ontology. For instance, PC was the most sold item in the past, but during these last five years, lots of customers 

turned to Apple products. Ontology cannot track the shift of users’ interests. The problems arising from semantic 

matchmaking and ranking are the following: 

 

 Using common, general, un-personalized criteria [Di Noia et al. 2007a, Di Noia et al. 2007b, Bener et al. 

2009] to evaluate the offers will not produce a personalized result. Searching a “common best offer” is not 

equal to solving each individual case since each individual is special. [Park & Gretzel 2010] shows that the 

individual’s choice is related to his own personal style. Moreover, most semantic matchmakers are satisfied 
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with their research work with only one user, and they do not consider whether the common best result could 

satisfy other users or not. 

 

 Evaluating the offers with multiple attributes is a challenging task. Bringing user-defined weights for the 

offer attributes into the evaluation function is not easy and not reliable [Skoutas et al. 2010]. In addition, users 

may have many trade-off situations when they evaluate complex offers [Skoutas et al. 2010]. Some trade-offs 

may occur between the attributes. For example, let us consider two computer attributes: category and price. For 

most semantic matchmakers, like [Di Noia et al. 2007a, Bener et al. 2009], both categories Mac and PC have 

equal ranking values, and the PC price is ranked better than the MAC price because it is lower. Still, some users 

prefer to pay more money to buy a Mac but not when buying a PC. This means there is a trade-off between 

category and price. In this case, matchmakers cannot explain why the user selected a higher price instead of a 

lower one. Trade-offs can also occur between the offer attributes and unobserved attributes [McFadeen 2001]. 

This issue is widely discussed in the economic choice area [McFadeen 2001] but still very few e-commerce 

technologies, like semantic matchmaking, have applied the economic ideas. For instance, the price attribute can 

be affected by other unobserved factors, such as the user’s emotion, feeling and salary. As a result, the user is 

willing to pay more in a certain price range (for example $1 - $100) but not in other price ranges (like $900-

$999) depending on his salary or other factors. All these complex cases cannot be considered by a simple 

weighing function [Skoutas et al. 2010]. Most semantic matchmakers still keep their experiments simple and 

with very few attributes, not really ready to the whole market. 

 

 Dealing with high-dimensional offer attributes is not considered by existing semantic matchmakers, to the 

best of our knowledge. 

In this paper, we address the problems above by providing a more user-oriented and personalized system to 

evaluate semantic offers (goods or web services). The proposed system determines the best offer by evaluating and 

sorting the offers according to the user’s interests. We believe the user’s specific interests are important for the 

evaluation because they are the real reasons explaining why an individual prefers a certain offer. We bring the 

interests into the ontology to be able to identify the differences between users’ needs. Our system catches and 

analyzes the user's interest for each attribute separately. On one hand this greatly simplifies the offer evaluation with 

multiple attributes, and on the other hand we can avoid many trade-off situations. If the user is not satisfied with the 

results, he can always re-select better interests for the attributes. Last, our model can deal with high-dimensional 

attributes. Compared to existing semantic matchmakers, our evaluation system provides to the user a unique 

framework to handle multiple, high-dimensional, concept and value-based attributes.  

To better illustrate the benefits of our system, we consider the following case: we have several users looking for 

the same service. In existing matchmakers, users who submit the same query get the exact same sorted list of offers. 

In Section 3, through a 5-attribute application, we demonstrate how our system catches the purchasing interests of 

each buyer, and how it recommends a different best offer to each buyer. Nowadays, matchmaking and ranking are 

important for advertisement matching [Essex 2009] and web-service matching, which are required in different 

business areas, such as Business-to-Business [Cheng et al. 2004] and Business-to-Customer [Guo 2008]. Our system 

may solve the unmatched-individual-interest problems by providing a personalized matchmaker that can help the 

user to find the offer that is the closest to his real needs.  

 

 
Figure 1: Semantic Matchmaker Improvement 
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In our system, first the user submits a request which is sent to the connected matchmaker. The latter returns a 

list of request-matched offers. To evaluate and sort these offers according to the user’s interests, our system 

performs the following tasks: (1) converts the concept attributes to numeric information; (2) clusters the values of 

each attribute; (3) catches the user’s interest for each attribute, (4) builds the user's interest model based on the 

interest weights and interest rates of the attributes; (5) applies the resulting model to evaluate the offers. We generate 

the attribute weights and rates according to the user’s selected clustering (or interests). Different clustering 

selections will produce different interest models. In the case study of Section 3, our system catches the interests of 

two buyers, and generates a different interest model for each buyer. We may note that our system  processes value-

based attributes, and any concept attribute needs to be converted to a numeric information  as it is done in some 

semantic matchmakers [Dong-wei et al. 2006, Qiu & Li 2008]. 

In this paper, we adopt the economic model called MultiNomial Logit (MNL) [McFadden 1974, McFadden 

2001] to the field of semantic matchmaking. The MNL model is widely used in commerce and statistic areas to 

study human shopping behaviors [Yu et al. 2006, Xu et al. 2010]. Nevertheless, MNL focuses on the population 

taste and the individual taste is eliminated. We modify the MNL model to provide a new interest model that takes 

into consideration the individual taste i.e. the interests. This model evaluates the offers and returns the best offer 

w.r.t the individual’s interests. The best offer has the highest interest value to the user. Furthermore, to take into 

account the user’s interest for each attribute, we need to incorporate to our system the clustering technology called 

Self Organizing Map (SOM) [Kohonen 2001, Chen & Young 2005].  As a neural-network based approach, SOM is 

used to cluster high-dimensional inputs onto lower-dimensional outputs. The reason of using SOM in our work is 

that the offer attributes may be complex or contain high-dimensional data. 
The rest of this paper is structured as follows. In Section 2, we present the distributed architecture of our system 

and also the different phases of our offer evaluation process.  In Section 3, we explain in detail each phase through a 

5-attribute application involving concept and high-dimensional attributes. In Section 4, we apply our system to a 

transport usage data set of 840 user selections of four types of travel transport. In Section 5, we describe some well 

known semantic matchmakers and compare them with our system. In Section 6, we report future work.   

 

2. An Interest-based Offer Evaluation System 

The proposed system is designed with a distributed architecture as depicted in Figure 2.  First the user specifies 

his request with the web service language, such as WSDL [Chabeb et al. 2010] and WSML [Klusch et al. 2008], that 

is used by the connected matchmaker. The user submits the specified request via the GUI that transmits it to the 

matchmaker. The latter returns a list of candidate offers.  On the server side, the OfferManager component: (1) 

collects the offers and stores them in the OfferContent database,  (2) analyzes the request and offers to extract the 

attributes and their values, (3) stores the attribute data in the OfferAttributes database, and (4) calls 

ConceptConvertor to convert the concept attributes to numeric information. The AttributeDataClustering 

component clusters the values of each attribute and sends the resulting clustering to the client side. The user can now 

select his most interested clustering for each attribute.  With these selections, our system will know the range and 

depth of the users’ interests. These selections are then transmitted to InterestWeightCalculator and 

InterestRateFunctionCreator components. For each attribute, InterestWeightCalculator produces its interest weight 

and InterestRateFunctionCreator its interest rate function.  The OfferEvaluator component: (1) builds the user’s 

interest model based on the interest weights and interest rate functions, (2) evaluates all the candidate offers with the 

generated model, and (3) returns a list of sorted offers.  

2.1. Converting Concept Attributes 

Since our system processes only numeric attribute data, any concept data needs to be converted to a digital 

number. Matchmakers utilize different conversion methods, such as converting by distance [Dong-wei et al. 2006] 

or by similarity [Qiu & Li 2008]. In Algorithm 1, we define the function convertConcept() to perform the 

conversion by distance . This function converts  the current concept called CChild to a high-dimensional position in 

order to keep the same relation to the other concepts like in the ontology.  First we generate the weight  of CChild  and 

get the distance between CChild   and its concept parent in the ontological tree. Afterwards, for each level in the tree 

we produce two data, called al and bl, to store the 2-dimensional position of CChild .  The function findConcept() 

determines the position of CChild in the ontological tree. It returns four variables: CParent the parent concept of CChild; n 

the number of children concepts of CParent; l the level of the position of CChild in the tree; i the index of CChild  as the 

child of CParent. . 
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Figure 2: An Interest-based Offer Evaluation System 

 

 

       convertConcept(CChild: String, Ontology: Tree, hdpcChild :Array)  

       {    1. hdpcChild    = void;   //high-dimensional position of Cchild 

                             do { 

2. findConcept (CChild , Ontology, CParent  , n, l, i) ; 

      // determine the position of CChild  
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                     // calculate the weight of CChild 

4. || CChild – CParent ||  =  || weight(CChild) - weight(CParent) ||;  

                     // get distance between CChild to CParent 
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                  // get CChild 2-dimensional position (al, bl) at level l 

6. add(hdpcChild, al(CChild), bl(CChild))     

       // add the 2D position to hdpc 

7. CChild   =  CParent      // go up in the ontology 

          }  while l ≠1 

8. return hdpcChild ; 

                       } 

Algorithm 1: Concept Conversion to a High-Dimensional Position 
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2.2. Clustering Attribute Data  

The goal of AttributeDataClustering component is to cluster the values of each attribute and send the resulting 

clustering (represented as a tree structure) to the client side. Thanks to this clustering, our system is able to catch the 

user’s interest for each attribute. The user is just required to select one of the attribute clustering to represent his 

most interested area. In Algorithm 2, we present the clustering function clusterAttributeData() that is based on the 

Self Organizing Map (SOM) [Kohonen 2001]. In our work, we apply SOM to recursively divide a large clustering 

into three sub-clustering until there are less data in each sub-clustering. The reason we let SOM divide a clustering 

into three groups is to arrange the attribute data as follows:  a set of higher values, a set of lower values and a set of 

values in the middle. This division will help the user to better examine and understand his interests. We include the 

function isLargeEnough() to check whether a clustering Ai is still large enough or not. If the range of Ai is greater 

than the minimal range of the attribute data, then we need to cluster Ai.  

 In SOM of Algorithm 3, createLVQ() generates three random Learning Vector Quantizations (LVQi) in the 

range of AttributeData; alpha (t) controls the learning loop and decreases with the learning time. During the learning 

time, the function SOM() performs the competitive-learning given in step 3.1.1 and in step 3.1.3 updates the LVQi 

positions according to the competitive-learning results [Kohonen 2001]. Since SOM updates the neighborhood of 

each LVQ, we need a “neighborhood” function, hci(), to figure out how much the neighborhood of a LVQ can be 

updated. In Appendix A, we give the implementation of SOM() in C#. 

 

clusterAttributeData (AttributeData: Array, ClusteringTree: Tree) 

{ 

1. MinRange = min (AttributeData); 

    // calculate the minimum range 

 2. SOM(AttributeData, A1, A2, A3); 

  // cluster all data into 3 groups 

 3. arrangeClustering (A1, A2, A3, ClusteringTree); 

 // arrange clustering in ascending order 

  4. for i = 1 to 3 

        if ( isLargeEnough (Ai, MinRange) ) 

             clusterAttributeData(Ai,  ClusteringTree);  

           // cluster each sub-group 

     5. return ClusteringTree; 

  } 

Algorithm 2: Attribute Data Clustering 

 

  SOM (AttributeData: Array, A1: Array, A2: Array, A3: Array) 

{   1.  t = 1;    //initialize learning time 

    2.  createLVQ (AttributeData, LVQ1, LVQ2, LVQ3); 

             // create random LVQi  

   3.  while ( alpha(t) is not too small ) 

                // decrease alpha(t) by time t 

       { 3.1 while ( pop (AttributeData, x) )  

             // pop x from data set 

         {   3.1.1  ||x - LVQc ||  =   min{ ||x - LVQi ||}; 

                     // find closest LVQc to x 

           3.1.2   add(x, Ac); 

                           // add x into the closest cluster Ac 

       3.1.3   LVQ(t+1) = LVQ(t) + hci(t)[x(t) - LVQ(t)]; 

                 // update LVQi to be closer to x 

              } 

            3.2  t = t+1; //increase time t 

         } 

          4. return A1, A2, A3; 

  } 

Algorithm 3: SOM  
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2.3. Computing  Interest Weights of  Offer Attributes 

InterestWeightCalculator computes the interest weight of each attribute. This weight denotes the degree of 

importance of an attribute. The interest weight is related to the depth and range of the selected clustering of the user. 

The smallest and deepest clustering represents a more specific interest for the user. To produce the attribute’s 

weight, we first determine the interest-weight coefficient of an attribute as shown in Formula (1) where:  k is an 

attribute, K the attribute set, AttributeData the data of k, SelectedClustering the user’s selected clustering for k, 

SelectedLevelTree the level of the selected clustering, and TotalLevelTree the number of levels in the clustering tree. 

The function Length() returns the length of the attribute interval i.e. the absolute difference between the two 

attribute’s endpoints.  

Kk
TreeTotalLevel

velTreeSelectedLe

usteringSelectedCl

ataAttributeD
coeIW

k

k

k

k

k 
)Length(

)Length(
_    

(1) 

This coefficient has to be compared to the other attributes’ coefficients to produce the interest weight for an 

attribute (cf. Formula (2)). An attribute with a larger coefficient gets a larger interest weight compared to the other 

attributes.  
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K

1k
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k
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2.4. Computing Interest Rates of  Offer Attributes 

InterestRateFunctionCreator produces the interest rate function of an attribute according to the user's selection. 

A linear function is usually used to measure the attributes’ rates [Ha & Park 2001, Yu et al. 2006, Huang et al. 

2008]. Nevertheless, in some cases, linear utility functions cannot assign weights to attributes in order to make a 

certain offer as the best offer. We explain this issue with the example of Table 1. We are looking for the best stock 

among three available stocks: Stock1 is low risk with low return, Stock3 is high risk with high return and Stock2 is 

in the middle. 

 

Table 1: Stock Data Example 

Stock Risk  Return 
Stock1 0.1 0.1 

Stock2 0.3 0.3 
Stock3 1 1 

 

Let us assume that the user considers Stock2 as the best offer. A linear utility function has to determine the 

weights for the two attributes “Risk” and “Return”. However, we demonstrate below that these weights do not exist 

when we want to make Stock2 as the best offer. Linear utility functions cannot make sure that each offer has a 

chance to be the best one.  

existnotdoWandW

0.7W0.7W

0.2W W0.2

1W1W0.3W0.3W

0.1W0.1W0.3W0.3W

Stock3n better tha is Stock2

Stock1n better tha is Stock2

ReturnRisk

ReturnRisk

ReturnRisk

ReturnRiskReturnRisk

ReturnRiskReturnRisk

























 

To solve this problem, we use un-linear functions, such as the sigmoid function
x

+
=ς(x)


exp1

1
. This function 

has few changes in the two intervals [-∞, -2] and [2, +∞]. Thus, in these two intervals, we can consider it as a linear 

function. However, the interval [-2, 2] is the quickly changeable area. The user’s selected clustering represents his 

interest for an attribute. In order to consider such interest in our interest rate function, we need to bind the user’s 

selected clustering into the changeable interval [-2, 2] (cf. Figure3). 
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Figure 3: Sigmoid Function 

 

Herein we explain how to produce the interest rate function for an attribute k, called ςk().  In Formula (3), x 

indicates the value of an attribute; [AL, AR] the whole attribute data and [L, R] the selected clustering. We utilize 

LVQ as the center of the function ςk(). LVQ is computed with the learning loops of the SOM algorithm. In fact, 

LVQ point can be either in the selected clustering [L, R] or outside:  

 

 If LVQ is inside [L, R], we decompose the interest rate function into two functions: ςk_Right() and ςk_Left()  as 

shown in Formula (3) where: αLeft is generated when binding [L, LVQ] into the interval [-2, 0]; αRight when 

binding [LVQ, R] into [0, 2]. αLeft controls the shape of the left side of the rate function, and αRight its right side. 

Sign is +1 or-1 depending if the interest rate function is increasing or decreasing (cf. Table2).   

 

 If LVQ is outside of [L, R], the interest rate function can be either ςk_Right () or ςk_Left  () depending on the 

LVQ position: left outside or right outside of the selected clustering. For example, if LVQ is on the right side 

of [L, R], we let ςk_Left () control the whole shape of the function since αRight() cannot be generated.  
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Table 2: Interest Rate Function Shape 
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2.5. Evaluating the Offers with the Interest Model 

The MNL model represents the utility function of an individual in a population. It includes the deterministic and 

random components [McFadden 2001] as follows:    Unj＝ Vnj  +  εnj , Cj  
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where: 

 Unj  is the utility of the individual n selecting item j;  

 Vnj  is the “representative”  or common taste of the population for  item j;  

 εnj  is the individual taste for  item j; 

 C is the set of items. 

In the formula below, the component Vnj consists of K observed deterministic features. Vnj contains the weight 

bk for each feature xnjk [McFadden 2001]: 





K

k

njnjkknj CjxbU
1

,     

In our work, we still follow the idea of the MNL model. First we consider the deterministic features as the offer 

attributes. Furthermore, we can decompose εnj into K attributes since εnj is the total alternative with K features. This 

means the evaluation of the attributes may be different according to the interests of each individual. At the market 

level, the individual taste ε is brought into the population model as a random utility [McFadden 1974]. Since it 

comes from individuals and its value is random, ε is usually removed from the MNL function [Yu et al. 2006, Xu et 

al. 2010]. However in our model, the individual taste becomes important. The population taste cannot cover each 

user’s specific interests. By including the individual taste, we have a better chance to produce real and personalized 

results. We propose Formula (4) to build our interest model.  

Oj,)IR(IWIM
K

1k

njknjknj 


   (4) 

where: 

 IMnj is the degree of interest of the user n selecting offer j with K attributes; 

 IWjk is the interest weight (i.e. bk) of  attribute k of offer j; 

 IRjk  is the interest rate (i.e. xjk +εj) of attribute k of offer j; 

 O is the set of offers. 

 

The OfferEvaluator component first builds the user’s interest model with Formula (4). Then it evaluates all the 

candidate offers and gets their interest values. The offers are then sorted according to their interest values. 

 

Table 3: Candidate Offers 

Offer ID Category CPU (GHz) RAM 

(GB) 

Hard Drive 

(GB) 

Price  ($) 

1 Desktop 2.2 2 320 (420, 400)* 

2 Netbook 2.2 3 640 (470, 370) * 

3 Laptop 2.5 4 500 (600, 500) * 

4 Everyday 2.33 8 1310 (1100, 800) * 

5 Performance 2.4 8 750 (999, 799) * 

6 Game 2.5 6 750 (1030, 830) * 

7 All-in-one 2.66 12 1024 (2500, 2200) * 

8 Server 2.3 12 960 (1000, 880) * 

9 iPad 2.5 6 820 (1100, 799) * 

10 Tablet 2.4 4 1200 (950, 900) * 

11 Apple 2.8 6 620 (1200, 1150) * 

12 Mac min (1.9, 1.9) * 10 1000 (800, 700) * 

13 Mac Book (3.0, 3.0) * 16 1500 (2900, 2600) * 

14 Mac  Pro (1.8, 1.8)* 9 160 (680, 680) * 

15 Mac  Air (3.2, 3.2)* 12 2000 (3200, 2500)* 

*: Two-dimensional Data 
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3. A Case Study with two Buyers 

This experiment consists of purchasing computers based on five attributes: Category, CPU, RAM, Hard Drive 

and Price. We assume here we have two buyers: Buyer1 and Buyer2, who submit the same request:  

Purchase a computer  with CPU ＞ 1.5 GHz, RAM ＞=  2.0 GB, Hard Drive ＞ 100 GB, Price < $3500 for the 

first ten purchased computers and Price ＜ $3000 for the next ten.  

We suppose the connected matchmaker returns the candidate offers given in Table 3 where Category is a 

concept attribute, CPU and Price contain high-dimensional values. In the next phases, we show how our system 

catches the purchasing interests of each buyer and determines the best offer. 

3.1. Converting Concept Attributes 

In Figure 4, we create the ontology of the attribute Category based on “bestbuy.com”.   

 

 
Figure 4: Computer Ontology 

 

By following Algorithm 1 of Section 2, we first compute the weight of each computer category and then its 

distance to its parent node. In Table 4, we give the weight, distance and high-dimensional position of some 

categories. In Figure 5, we show how to produce the dimensional position of a concept.  

 

 
Figure 5: Concept Conversion 
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Table 4:  Examples of Concept Conversion 

Category Weight Distance High-dimensional Position (a1, b1, a2, b2 ) 

Computer 1 1 - 1 = 0 0, 0, 0, 0 

Laptop 1/4 1- 1/4  = 3/4 0, -0.75, 0, 0 

Desktop 1/4 1- 1/4  = 3/4 -0.75, 0, 0, 0 

Tablet 1/4 1- 1/4  = 3/4 0, 0.75, 0, 0 

Apple 1/4 1- 1/4  = 3/4 0.75, 0, 0, 0 

Netbook 1/8 1/4-1/8 = 1/8 0, -0.75, -0.125, 0 

Laptop 1/8 1/4-1/8 = 1/8 0, -0.75, 0.125, 0 

 

3.2. Clustering Attribute Data 

Our system displays via the GUI the clustering tree of each attribute (cf. Figure 9). Figures 6, 7 and 8 illustrate 

respectively the clustering of Hard Drive, CPU and Category.  For the Category attribute, we give the concept view, 

and in Appendix B the position view.  Since LVQs are randomly initialized (cf. Algorithm 3), sometimes one or 

more LVQs may be far away from the attribute data. Consequently, the corresponding clustering will not include 

any value. That is why in Figures 6, 7 and 8, some clustering have less than three sub-clustering.   

 

 
Figure 6:  Hard-Drive Data Clustering 

 

 
Figure 7: CPU Data Clustering 
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Figure 8: Category Data Clustering (Concept View) 

 

Each buyer can now select his most interested clustering for each attribute as shown in Figure 9 for Buyer1. 

With these selections, our system will know the range and depth of each buyer’s purchasing interests. Table 5 is an 

example of the interests of Buyer1 and Buyer2. For CPU and RAM, both buyers selected a clustering in level 1 

because they have no special interests in these two attributes. Buyer1 may have a less interest in CPU than Buyer2 

since he chose a larger clustering range. For the same reason, Buyer2 may have less interest in RAM. Buyer1 

focuses on lower price and Hard Drive. Buyer2 is the opposite buyer who wants a higher Hard Drive with an 

acceptable price. Moreover, Buyer1 is looking for a desktop computer while Buyer2 is interested in Apple products.  

 

 
Figure 9:  Selected Clustering of Buyer1 
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Table 5: Selections of Both Buyers 

  Buyer1 Buyer2 

CPU Clustering [2.2, 2.8] [(3,3), (3.2, 3.2)] 

Level 1 1 

RAM Clustering (2, 4) (9, 16) 

Level 1 1 

Hard Drive Clustering (820, 1024) (1200, 1500) 

Level 2 3 

Price Clustering [(420, 400), (600, 

500)] 

[(999, 799), (1200, 1150)] 

Level 3 2 

Category  Clustering [Desktop, …,  Server] [Apple, ..., MacBook-Air] 

Level 1 2 
 

3.3. Computing Interest Weights of  Offer Attributes 

We give here an example on how to calculate the interest weights. Buyer1 selected the CPU clustering [2.2, 2.8] 

which is at level 1 of the 5-level CPU tree and all CPU data are in the range of [2.2, (3.2, 3.2)]. Thus, the interest-

weight coefficient of CPU is 1.1167. We perform the same calculation for the other attributes: Price with a 

coefficient of 10.1521, Category with 0.9934, RAM with 2.3333 and Hard Drive with 3.6078. Buyer1’s CPU 

interest weight for our 5-attribute application is as follows:  

 

0613.0
9934.06078.33333.21521.101167.1

1167.1



CPU_Buyer1IW

 

 
According to the interest-weight calculation performed by our system (cf. Figure 10), we can see that Price 

(with a weight of 0.5577) is the most important attribute for Buyer1. For the other attributes, Hard Drive (0.1982) is 

more important than RAM (0.1282) and CPU (0.0613). And CPU is less preferred than RAM. Such interests will 

help our system to understand Buyer1’s needs. Buyer2 has another purchasing interest. If we compare the two 

buyers, we can see that Buyer2 is more interested in CPU and Hard Drive than Buyer1. This result corresponds to 

the buyers’ selections: Buyer2 has selected a narrower clustering for these two attributes.  

 

 

Figure 10: Interest Weights for Both Buyers 

 

3.4. Computing Interest Rates of Offer Attributes 

For each buyer, we generate the interest rate functions for the five attributes by binding the selected clustering 

into the quickly changeable area.  First we give an example on how to generate LVQs during the SOM learning time 

for high-dimensional attributes like CPU (cf. Table 6). 
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Table 6:  LVQ Generation for CPU 

    

To be able to produce the interest rate function for high-dimensional attributes, we need first to compute the 

distances between the attribute data and the best attribute value. For example in Table 7, we give the distances for 

CPU regarding Buyer1.  Buyer1’s selection of [2.2, 2.8] has a LVQ of (2.2654, 0.2979); the clustering [3.2, 3.2] is 

the best attribute value.  

 

Table 7: Distances of High-Dimensional Data 

x BestAttributeData Distance(x, BestAttributeData) 
2.2 *** (3.2, 3.2) 3.3526 
2.8 ** (3.2, 3.2) 3.2249 

(2.2654, 0.2979)* (3.2, 3.2) 3.0489 
***Min selection value (L), **Max selection value (R), *LVQ 

 

In Table 8, we produce the interest rate function of CPU for Buyer1.  This function is depicted in Figure 11. We 

may note that LVQ distance of 3.0489 is right outside of the selected clustering distance of [3.3526, 3.2249].  

 

Table 8: ςCPU() Generation for Buyer1 

[AL, AR] Distance  

(LVQ, BestAttributeData) 

αLeft αRight Sign 

[2.2, (3.2,3.2)] 3.0489 6.5848 N/A +1 

[L, R] 

[2.2, 2.8] 

αLeft  = 2 / | Distance(L, BestAttributeData) - Distance(LVQ, BestAttributeData) | 

= 2 / | 3.3526 – 3.0489 | = 6.5848 

] (3.2,3.2) ,2.2[,
exp1

1
)(ς

exp1

1
)(ςς

|0489.3))2.3,2.3,((tan|5848.6CPU_Left

|]uteData)BestAttribLVQ,(tan),(tan|[CPU_LeftCPU
Left









x
+

x=

+
x=(x)

xceDis

ceDisuteDataBestAttribxceDisSign

 In Figure 11, most offers have lower CPU interest rates in the range of [0.11, 0.24]. Four offers have higher 

CPU interest rates: Offer15 (3.2, 3.2) with an interest rate of 0.9999; Offer 14 (1.8, 1.8) with 0.9991; Offer13 (3, 3) 

with 0.9999; Offer12 (1.9, 1.9) with 0.9997.  

In Table 9, we produce the rate function for Buyer2. LVQ for the selected clustering [(3.0, 3.0), (3.2, 3.2)] is 

(2.8818, 2.9115). Thus the distance of LVQ to the best attribute data is 0.4295. LVQ is left outside of the selected 

clustering. Thus, the generated CPU interest rate function for Buyer2 has only ςRight() (cf. Figure 12). 

 

Initial LVQ1 (1.85, 0.5)   

 LVQ2 (2.98, 2.5)   

 LVQ3 (2.01, 1.54)   

Loop1 Input x (2.2,0) … (3.2, 3.2) 

 LVQ1 (1.8506, 0.4991) … (1.8565194, 0.4937947) 

 LVQ2 (2.9799, 2.4999) … (2.9802438, 2.5018309) 

 LVQ3 (2.0100, 1.5398) … (2.0097686, 1.53987435) 

Loop2 LVQ1 (1.8565265, 0.49378457) … (1.8565933, 0.49372432) 

 LVQ2 (2.9802438, 2.50183087) … (2.9802465, 2.50185127) 

 LVQ3 (2.0097691, 1.53987249) … (2.0097661, 1.53987294) 

Loop3 … … … … 

…      
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Figure 11: CPU Interest Rate Function for Buyer1 

 

Table 9:  ςCPU() Generation for Buyer2 

[AL, AR] Distance 

(LVQ, BestAttributeData) 

αLeft αRight Sign 

[2.2, (3.2,3.2)] 0.4295 N/A -4.6564 +1 

[L, R] 

[(3.0,3.0), (3.2, 3.2)] 

αRight  = -2 / | Distance(R, BestAttributeData) - Distance(LVQ, BestAttributeData) | 

= -2 / | 0 – 0.4295 | = -4.6564 

 (3.2,3.2)  2.2,
exp1

1
)(ς

exp1

1
)(ςς

|4295.0))2.3,2.3(,(tan|6564.4CPU_Right

|]uteData)BestAttribLVQ,(tan),(tan|[CPU_Right2CPU_Buyer
Right









x
+

x=

+
x=(x)

xceDis

ceDisuteDataBestAttribxceDisSign

 

 

Figure 12: CPU Interest Rate Function for Buyer2 



Journal of Electronic Commerce Research, VOL 13, NO 1, 2012 

 Page 15 

 

As we can see in Figure 12, only two offers have higher CPU interest rates: Offer15 (3.2, 3.2) with a rate of 

0.8808 and Offer 13 (3, 3) with 0.6644. The other offers have lower CPU interest rates, less than 0.1, because they 

are far away from the selected clustering.  

If we compare the two interest rate functions of Figure 11 and 12, we find out that most CPU attributes in offers 

are acceptable for Buyer1, while Buyer2 only interests the largest CPU. CPU interest rates of Offer12 and Offer14 

for both buyers are obviously shown their different interest focus. 

3.5. Evaluating the Offers with the Interest Model 

After our system gets the interest weights and interest rate functions for the five attributes, it generates the 

interest model (IM) for both buyers as follows. 

 

IMBuyer1(Offer)= 0.0613· ϛ CPU(CPU) + 0.1282· ϛ RAM(RAM) + 0.1982· ϛ HardDrive(HardDrive) + 

0.5577· ϛ Price(Price) + 0.0546 · ϛ Category (Category)  

 

IMBuyer2(Offer)= 0.1966· ϛ CPU(CPU) + 0.0548· ϛ RAM(RAM) + 0.3023· ϛ HardDrive(HardDrive) + 

0.2831·ϛ Price(Price) + 0.1632 · ϛ Category (Category)  

 

For instance, we show below how the interest model calculates the interest value for the first offer:  

 

   IMBuyer1(Offer1) = 0.0613·ϛ CPU(2.2) + 0.1282·ϛ RAM(2) + 0.1982·ϛ HardDrive(320) + 

0.5577·ϛ Price[(420,400)] + 0.0546· ϛ Category([Desktop, …, Server])  

 

= 0.0613·0.119202 + 0.1282·0.119207 + 0.1982·0.0015 + 0.5577·0.8800 + 0.0546· 0.8808 

= 0.5618 

 

IMBuyer2(Offer1) = 0.1966·ϛ CPU(2.2) + 0.0548·ϛ RAM(2) + 0.3023·ϛ HardDrive(320) + 0.2831· ϛ Price[(420,400)] 

+ 0.1632·ϛ Category([Apple, …, MacBook-Air])  

 

= 0.1966·3.93E-07 + 0.0548·1.15E-08 + 0.3026·1.3E-09 + 0.2831·0.9994 + 0.1632· 0.8702 

= 0.4250 

 

So, we obtained an interest value of 0.5618 for Buyer1 and 0.4250 for Buyer2. Based on these values, we can 

conclude that Buyer1 has a higher interest for Offer1 than Buyer2. With our interest model, the system evaluates all 

the candidate offers of Table 3. Our system returns a ranked list of offers for both buyers as shown in Tables 10: 

Offer1 is the best offer for Buyer1 and Offer15 the best offer for Buyer2.  

 

Table 10: Offer Evaluation and Ranking  

Offer 

ID 

IMBuyer1  Offer 

ID 

IMBuyer2 

1 0.5618  15 0.6553 
2 0.5535  13 0.5852 

3 0.4736  4 0.5292 

15 0.4345  12 0.4488 
13 0.4314  14 0.4302 

4 0.3703  2 0.4254 
12 0.3667  1 0.4250 

14 0.3460  3 0.4248 

10 0.3356  10 0.4219 
7 0.2797  8 0.4183 

8 0.2537  5 0.3924 
9 0.2135  6 0.3804 

5 0.2069  9 0.3672 
6 0.2056  7 0.1796 

11 0.1946  11 0.1775 
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4. Transport Usage Application 

For the second experiment, we consider a database containing 840 user selections of four types of travel 

transport: by AIR, TRAIN, BUS and CAR [Greene 2010, Multinomial Choice 2010] (cf. Figure 13).  In total, there 

are 210 users and each of them selected his best transport. The selected transport is represented by the attribute 

MODE with value 1, and the unselected one with value 0. For example, the first four rows are the choices of User1: 

the first three rows are respectively the unselected transport AIR, TRAIN and BUS; the fourth row is the selected 

transport CAR. For our experiment, we only focus on four attributes: TTME (Terminal TIME), INVC (IN Vehicle 

Cost), INVT (IN Vehicle Time) and GC (Generalized Cost of travel model) among the fourteen observed attributes 

given in [Multinomial Choice 2010].  

 

 
Figure 13: 840 Observations on Transports Usage 

 

We now apply our interest model to the database of Figure 13 in order to generate the best transport for each 

user. We consider each row as an offer. Thus, we have 840 offers. Our system clusters 840 data for each attribute, 

and produces four clustering trees for the attributes TTME, INVC, INVT and GC.  Figure 14 depicts the clustering 

tree of TTME.  

 

 
Figure 14: TTME Clustering Tree 

 

Each user is required to select his most interested clustering for the four attributes in order to produce his 

interest model. For this experiment, we need in total 820 clustering selections. Since we cannot acquire all the users’ 

selections, we assume here that each user chooses the largest clustering which contains the attribute values 

corresponding to the selected transport. We call this largest clustering SLC. In Figure 14, the highlighted clustering 
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represents SLC for User1 since it is the largest clustering containing the value 0 and not the values 69, 34 and 35 for 

the attribute TTME.  The value 0 of TTME (fourth row of Figure 13) corresponds to User1’s selected transport.  

For our experiment, we only employ SLC as the users’ selections for the four attributes.  Table 11 shows the 

results returned by our evaluation system for 50 users. We need to manually select 200 SLCs for the 50 users.  Our 

interest model accuracy rate is 40% when selecting the largest clustering. We may note that the accuracy is strongly 

dependent on the users’ selections. Our interest model may have better evaluation results if we have the real users’ 

selections. In addition, the smallest and deepest clustering in the tree will provide better results.  

 

Table 11:  Best Transports for 50 Users 

Users User Selected Transport IM Best Transport 
User1 Car Car 

User2 Car Car 
User3 Car Car 

User4 Car Car 

User5 Car Car 
User6 Train Air 

User7 Air Train 
User8 Car Bus 

User9 Car Car 
User10 Car Car 

User11 Car Car 

User12 Car Car 
User13 Car Car 

User14 Car Car 
User15 Car Car 
…

   
User17 Train Train 
…

   
User20 Train Train 
…

   
User23 Air Air 
…

   
User25 Air Air 
…

   
User41 Air Air 
…

   
User43 Air Air 
…

   
User46 Air Air 
…

   
User49 Air Air 
User50 Air Bus 

 

In Table 12, we measure the performance of our system for the applications of sections 3 and 4. All running 

time includes the interaction with the database system. We can see that our system runs with a very good 

performance. We cannot experimentally compare the efficiency between our system and other ranking methods 

since there are no standard and public datasets for semantic matchmaking and ranking.  

 

Table 12:  System Performance 

 15 Offers (5 attributes) 840 Offers (4 attributes) 

Clustering (Server) 580.2476 ms 110,284.265 ms 

IW (Client) 13.4154 ms 51.6797 ms 

IR (Client) 219.3452 ms 4,794.4967 ms 

Evaluation (Client) 200.5748 ms 10,678.3938 ms 

Total Time 1013.583 ms 12,5808.8 ms 
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5. Related Work 

In the early time of e-commerce, matchmakers matched buyers with suppliers by mapping the attributes of the 

request and offers [Ha & Park 2001]. On the Internet, requests and offers are expressed in different schemas and 

words even when representing the same semantic meaning. This caused the early matchmakers to be blind to some 

potential offers. To solve this problem, semantic matching models, based on the ontologies, have been 

proposed. [Kawamura & Hasegawa 2005] matches services with the request by using a semantic filtering supported 

by the ontology. [Qiu & Li 2008] proposes an ontology similarity table to identify all the similar concepts of the 

request and offers. [Dong-wei et al. 2009] defines logical relationships in the ontology to map the concepts of 

request and offers.  

Nevertheless, these matchmakers return an unranked list of candidate offers. So, the user needs to spend a lot of 

time evaluating the offers in order to find the best offer. Several ranking models have been introduced to sort the 

offers. [Dong-wei et al. 2006] introduces a distance measurement between the request concept node to the offer 

concept node in the ontology. [Di Noia et al. 2007a] presents a penalty function to convert the logical relationships 

in the ontology to digital values.  The penalty values are then used to rank the offers. [Bener et al. 2009] assigns 

scores to the logical relationships. [Huang et al. 2008] utilizes a ranking function based on the user’s attribute 

weights. [Shen et al. 2006] combines both concept ranking and constraint ranking. It analyzes each keyword and 

constraint appearing in the request and offer, and then calculates the offer fitness rate. In [Hahn et al. 2008], 

matching and ranking are based on the semantic similarity of the request model and offer model. We may note that 

most ranking criteria are defined by the system developers. Indeed, these ranking models dismiss the user’s own 

ranking criteria.  Users may have to accept a system believed best offer. In our research work, we take into 

consideration the user's interests to have a better chance to produce real and personalized results. 

Furthermore, the above ranking methods map the functional properties of offers with the request’s functional 

description. However, these methods cannot explain why sometimes the user prefers an offer that is different from 

the best recommended offer. [Yu & Reiff-Marganiec 2008] argues that the user’s choice may be affected by other 

criteria often referred to as non-functional properties. Some methods have been proposed to handle the non-

functional properties [Wang et al. 2006, Liu et al. 2009]. Since these non-functional properties functions are linear, 

they cannot make sure that each offer has a chance to be the best offer.  In our work, we avoid this problem with our 

un-linear interest model. 

In [Skoutas at al. 2010], the authors point out that any single matching criterion is not good enough to determine 

the best offer with multiple attributes. In addition, they are complex trades-off situations between attributes. The 

existing ranking models are only based on ranking the values of query words, functional or non-functional 

parameters, but not on ranking offers with individual’s interests. The latter are the real reasons explaining why an 

individual selects a specific offer. Our research goal is to develop a more user-oriented and personalized system to 

evaluate the offers. 

Most recommender systems utilize the collaborative filtering method to find the best item for the user [Zhan et 

al. 2010, Chandrashekhar & Bhasker 2011, Shambour & Lu 2011]. This method evaluates an item according to the 

other users' ratings.  Other research work, like [Coleho at al. 2010], integrates the user’s personality into the 

recommender system.  Creating such user model requires a large set of user information, and sometimes the user 

does not leave any information. Recommender and matchmaking systems share the same goal: determine the best 

item for the user.  However, there are major differences between these two systems:  (1) matchmaking systems 

compute how much an offer is close to the user’s request. They rank the offers based on the semantic matching 

degree between the query and offer [Di Noia et al. 2007a, Skoutas et al. 2010].  Matchmakers discover offers by 

mapping one by one the attributes of the offer and request;  (2)  recommender systems  try to  predict the user’s 

rating for an item based on other users’ ratings for this item. They do not examine each item attribute but consider 

an  item as a whole. 

Compared to our work, the accuracy of the results returned by the recommender systems is much lower since 

they recommend an item that is preferred by the other users with similar tastes.  Our offer evaluation system 

determines the best offer by taking into consideration only the interests of the user. Furthermore, the recommender 

systems process a large database of user information. To evaluate the offers, our system requires very few inputs 

from the user.  For each attribute, the user just needs to click on one clustering to make a selection.  

 

6. Conclusion and Future Work 

In this paper, we showed the benefits of sorting the request-matched offers according to the user’s interests. By 

adopting the well-known economic MNL model, we produced an automated interest model that determines the best 

offer based on to the user’s specific needs. The proposed system provides a more user-oriented and personalized 

solution for evaluating the offers and avoids the linear matching problems. 
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There are several possible directions of this work. The first one is to compare our interest model with the MNL 

model by using the transport usage application. The second direction is to include the interest learning [Wei et al. 

2005] in our offer evaluation system.  The main purpose of this learning is to update the interest model to fit the 

user’s interests instantly. A learned interest model will be able to determine the best offer in these two following 

situations: the user shifts his interests, or new matched offers are added in our system database. Last but not least, 

we are interested in producing personalized attribute clustering trees specifically for each buyer because buyers may 

have different knowledge, experience, attitude, etc. Also, using users’ feedbacks [Palanivel & Sivakumar 2010] may 

improve the system results. Our system will be able to better understand each buyer's interests with these features 

and feedbacks. 
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Appendix A: SOM ( ) Function 

 

/* Related class member variables */ 

private double[] A1_LVQ;  // LVQ1 

private double[] A2_LVQ;  // LVQ2 

private double[] A3_LVQ;  // LVQ2 

private ArrayList A1_offer_id = new ArrayList();   // A1 

private ArrayList A2_offer_id = new ArrayList(); // A2 

private ArrayList A3_offer_id = new ArrayList(); // A3 

 

private void SOM ( DataTable attribute_table, int dimension, DataTable root_attribute_table, int level ) 

{  /* Initialize Data Values */ 

double LVQ1_distance =0; 

double LVQ2_distance =0; 

double LVQ3_distance =0; 

int learn_time =1; 

this.CreateLVQ (dimension, attribute_table); /* Create Random LVQ */ 

/* Learning Loop */ 

while (this.GetLearningRate (learn_time) > 0.0001)  

 //Check if it need learning again 

{  // Pick up value x 

for ( int i=0; i<attribute_table.Rows.Count; i++ ) { 

for ( int j=1; j<=dimension; j++ ) { 

                   // Calculating distance between x to LVQ1 through the loop 

               LVQ1_distance += Math.Pow (  

(System.Convert.ToDouble (attribute_table.Rows[i][j])  

              - this.A1_LVQ[j-1] ), 2.0 );     

                // Calculating distance between x to LVQ2 through the loop 

      LVQ2_distance += Math.Pow ( 

           (System.Convert.ToDouble (attribute_table.Rows[i][j])  

           -this.A2_LVQ[j-1] ), 2.0 ); 

                // Calculating distance between x to LVQ3 through the loop 

              LVQ3_distance += Math.Pow ( 

          (System.Convert.ToDouble (attribute_table.Rows[i][j])  

            - this.A3_LVQ[j-1] ), 2.0 ); 

} 

// Get each LVQ distance to x  

LVQ1_distance = Math.Round ( Math.Sqrt (LVQ1_distance), 2 ); 

LVQ2_distance = Math.Round ( Math.Sqrt (LVQ2_distance), 2 ); 

LVQ3_distance = Math.Round ( Math.Sqrt (LVQ3_distance), 2 ); 

 

// Find the closest LVQ to x 

this.FindWinnerLVQ ( LVQ1_distance, LVQ2_distance,  

LVQ3_distance, System.Convert.ToInt32 (attribute_table.Rows[i][0]) );   

this.updateLVQ ( i, dimension, attribute_table,  

LVQ1_distance, LVQ2_distance, LVQ3_distance, 

this.GetLearningRate (learn_time), root_attribute_table ); 

 

// Update LVQi      

LVQ1_distance = 0; 

LVQ2_distance = 0; 

LVQ3_distance = 0;  // Clear LVQ distance for next input x 

}  

learn_time ++;  // Learning time update 

if ( this.GetLearningRate (learn_time) > 0.01 )  

{   // Prepare for next learning 
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         A1_offer_id = new ArrayList(); 

A2_offer_id = new ArrayList(); 

         A3_offer_id = new ArrayList(); 

} 

    }     

} 

 

/*  SOM sub-function  

* Find the closest LVQc to x 

* Put x into LVQc related cluster  */ 

 

private void FindWinnerLVQ ( double distance1, double distance2, double distance3, int current_row ) { 

int winner = 0; 

/* Find the closest LVQ based on distance */ 

if (distance1 <= distance2){ 

         if (distance1 <= distance3) { winner = 1; } 

         else { winner = 3; }   } 

else{ 

         if (distance2 <= distance3) { winner = 2; } 

         else { winner = 3; }   } 

/* Put x in Ac  

* The Ac could be temporary.  

* It depends on when the learning loop stop.  

* The last time generated Ac is the final result */ 

if (winner == 1) { this.A1_offer_id.Add (current_row); } 

if (winner == 2) { this.A2_offer_id.Add (current_row); } 

if (winner == 3) { this.A3_offer_id.Add (current_row); }     

} 
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