
Journal of Electronic Commerce Research, VOL 13, NO 1, 2012

 Page 1

EVALUATING AND RANKING SEMANTIC OFFERS ACCORDING TO

USERS' INTERESTS

Wei Jiang

Computer Science Department

University of Regina

3737 Wascana Parkway, Regina, Saskatchewan

Canada, S4S 0A2

jiang20w@uregina.ca

Samira Sadaoui

Computer Science Department

University of Regina

3737 Wascana Parkway, Regina, Saskatchewan

Canada, S4S 0A2

sadaouis@uregina.ca

ABSTRACT

Semantic matchmaking systems are not successful in identifying the differences between users’ interests. To

address this weakness, we develop a user-oriented and personalized system to evaluate the offers that match the

user’s request. Our system evaluates and ranks the offers according to the user’s specific interests to bring better

results to each individual. The best offer represents the maximum satisfaction of the user. The proposed system

extracts and analyzes the user’s interests for multiple offer attributes. To evaluate the offers, we adapt the well-

known economic model MultiNomial Logit to the field of semantic matchmaking. We show the benefits of our offer

evaluation system through a detailed case study involving multiple, high-dimensional, concept and value-based

attributes. In this study, we show how our system catches the differences between the purchasing interests of two

buyers, and how it recommends a different best offer to each buyer. Furthermore, we assess the feasibility of the

proposed system with a transport usage dataset. The experiment results demonstrate that our system can provide

good result for each individual.

Keywords: MultiNomial Logit model, clustering technology SOM, semantic matchmaking, interest model, high-

dimensional offer attributes.

1. Introduction

Semantic matchmaking is one of the most important processes of e-commerce. Nowadays with the blooming of

e-commerce and e-services, users may obtain a large number of request-matched offers. It is really time consuming

for users to evaluate and sort the entire candidate offers in order to find the best offer. Returning a ranked list of

offers is a very important task for semantic matchmaking systems. And recent matchmakers [Di Noia et al. 2007a,

Di Noia et al. 2007b, Bener et al. 2009, Skoutas et al. 2010] realize this importance. Our research work has the

same goal as matchmakers: rank the offers to determine the best offer. As illustrated in Figure 1, we are not

improving any matching work but only the ranking work for the matchmakers. Semantic matchmakers usually rely

on common, standard ontologies to match and rank the offers. However in each domain, each individual may have

different knowledge background i.e. different ontology to judge the offers. Using a common and public ontology

does not take into account the users’ differences. Furthermore, changes in the users' interests cannot be expressed in

ontology. For instance, PC was the most sold item in the past, but during these last five years, lots of customers

turned to Apple products. Ontology cannot track the shift of users’ interests. The problems arising from semantic

matchmaking and ranking are the following:

 Using common, general, un-personalized criteria [Di Noia et al. 2007a, Di Noia et al. 2007b, Bener et al.

2009] to evaluate the offers will not produce a personalized result. Searching a “common best offer” is not

equal to solving each individual case since each individual is special. [Park & Gretzel 2010] shows that the

individual’s choice is related to his own personal style. Moreover, most semantic matchmakers are satisfied

file:///C:/Documents%20and%20Settings/mkiang/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/61VDKKWK/jiang20w@uregina.ca
file:///C:/Documents%20and%20Settings/mkiang/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/61VDKKWK/sadaouis@uregina.ca

Jiang & Sadaoui: Evaluating nnd Ranking Semantic Offers According to Users’ Interests

 Page 2

with their research work with only one user, and they do not consider whether the common best result could

satisfy other users or not.

 Evaluating the offers with multiple attributes is a challenging task. Bringing user-defined weights for the

offer attributes into the evaluation function is not easy and not reliable [Skoutas et al. 2010]. In addition, users

may have many trade-off situations when they evaluate complex offers [Skoutas et al. 2010]. Some trade-offs

may occur between the attributes. For example, let us consider two computer attributes: category and price. For

most semantic matchmakers, like [Di Noia et al. 2007a, Bener et al. 2009], both categories Mac and PC have

equal ranking values, and the PC price is ranked better than the MAC price because it is lower. Still, some users

prefer to pay more money to buy a Mac but not when buying a PC. This means there is a trade-off between

category and price. In this case, matchmakers cannot explain why the user selected a higher price instead of a

lower one. Trade-offs can also occur between the offer attributes and unobserved attributes [McFadeen 2001].

This issue is widely discussed in the economic choice area [McFadeen 2001] but still very few e-commerce

technologies, like semantic matchmaking, have applied the economic ideas. For instance, the price attribute can

be affected by other unobserved factors, such as the user’s emotion, feeling and salary. As a result, the user is

willing to pay more in a certain price range (for example $1 - $100) but not in other price ranges (like $900-

$999) depending on his salary or other factors. All these complex cases cannot be considered by a simple

weighing function [Skoutas et al. 2010]. Most semantic matchmakers still keep their experiments simple and

with very few attributes, not really ready to the whole market.

 Dealing with high-dimensional offer attributes is not considered by existing semantic matchmakers, to the

best of our knowledge.

In this paper, we address the problems above by providing a more user-oriented and personalized system to

evaluate semantic offers (goods or web services). The proposed system determines the best offer by evaluating and

sorting the offers according to the user’s interests. We believe the user’s specific interests are important for the

evaluation because they are the real reasons explaining why an individual prefers a certain offer. We bring the

interests into the ontology to be able to identify the differences between users’ needs. Our system catches and

analyzes the user's interest for each attribute separately. On one hand this greatly simplifies the offer evaluation with

multiple attributes, and on the other hand we can avoid many trade-off situations. If the user is not satisfied with the

results, he can always re-select better interests for the attributes. Last, our model can deal with high-dimensional

attributes. Compared to existing semantic matchmakers, our evaluation system provides to the user a unique

framework to handle multiple, high-dimensional, concept and value-based attributes.

To better illustrate the benefits of our system, we consider the following case: we have several users looking for

the same service. In existing matchmakers, users who submit the same query get the exact same sorted list of offers.

In Section 3, through a 5-attribute application, we demonstrate how our system catches the purchasing interests of

each buyer, and how it recommends a different best offer to each buyer. Nowadays, matchmaking and ranking are

important for advertisement matching [Essex 2009] and web-service matching, which are required in different

business areas, such as Business-to-Business [Cheng et al. 2004] and Business-to-Customer [Guo 2008]. Our system

may solve the unmatched-individual-interest problems by providing a personalized matchmaker that can help the

user to find the offer that is the closest to his real needs.

Figure 1: Semantic Matchmaker Improvement

Journal of Electronic Commerce Research, VOL 13, NO 1, 2012

 Page 3

In our system, first the user submits a request which is sent to the connected matchmaker. The latter returns a

list of request-matched offers. To evaluate and sort these offers according to the user’s interests, our system

performs the following tasks: (1) converts the concept attributes to numeric information; (2) clusters the values of

each attribute; (3) catches the user’s interest for each attribute, (4) builds the user's interest model based on the

interest weights and interest rates of the attributes; (5) applies the resulting model to evaluate the offers. We generate

the attribute weights and rates according to the user’s selected clustering (or interests). Different clustering

selections will produce different interest models. In the case study of Section 3, our system catches the interests of

two buyers, and generates a different interest model for each buyer. We may note that our system processes value-

based attributes, and any concept attribute needs to be converted to a numeric information as it is done in some

semantic matchmakers [Dong-wei et al. 2006, Qiu & Li 2008].

In this paper, we adopt the economic model called MultiNomial Logit (MNL) [McFadden 1974, McFadden

2001] to the field of semantic matchmaking. The MNL model is widely used in commerce and statistic areas to

study human shopping behaviors [Yu et al. 2006, Xu et al. 2010]. Nevertheless, MNL focuses on the population

taste and the individual taste is eliminated. We modify the MNL model to provide a new interest model that takes

into consideration the individual taste i.e. the interests. This model evaluates the offers and returns the best offer

w.r.t the individual’s interests. The best offer has the highest interest value to the user. Furthermore, to take into

account the user’s interest for each attribute, we need to incorporate to our system the clustering technology called

Self Organizing Map (SOM) [Kohonen 2001, Chen & Young 2005]. As a neural-network based approach, SOM is

used to cluster high-dimensional inputs onto lower-dimensional outputs. The reason of using SOM in our work is

that the offer attributes may be complex or contain high-dimensional data.
The rest of this paper is structured as follows. In Section 2, we present the distributed architecture of our system

and also the different phases of our offer evaluation process. In Section 3, we explain in detail each phase through a

5-attribute application involving concept and high-dimensional attributes. In Section 4, we apply our system to a

transport usage data set of 840 user selections of four types of travel transport. In Section 5, we describe some well

known semantic matchmakers and compare them with our system. In Section 6, we report future work.

2. An Interest-based Offer Evaluation System

The proposed system is designed with a distributed architecture as depicted in Figure 2. First the user specifies

his request with the web service language, such as WSDL [Chabeb et al. 2010] and WSML [Klusch et al. 2008], that

is used by the connected matchmaker. The user submits the specified request via the GUI that transmits it to the

matchmaker. The latter returns a list of candidate offers. On the server side, the OfferManager component: (1)

collects the offers and stores them in the OfferContent database, (2) analyzes the request and offers to extract the

attributes and their values, (3) stores the attribute data in the OfferAttributes database, and (4) calls

ConceptConvertor to convert the concept attributes to numeric information. The AttributeDataClustering

component clusters the values of each attribute and sends the resulting clustering to the client side. The user can now

select his most interested clustering for each attribute. With these selections, our system will know the range and

depth of the users’ interests. These selections are then transmitted to InterestWeightCalculator and

InterestRateFunctionCreator components. For each attribute, InterestWeightCalculator produces its interest weight

and InterestRateFunctionCreator its interest rate function. The OfferEvaluator component: (1) builds the user’s

interest model based on the interest weights and interest rate functions, (2) evaluates all the candidate offers with the

generated model, and (3) returns a list of sorted offers.

2.1. Converting Concept Attributes

Since our system processes only numeric attribute data, any concept data needs to be converted to a digital

number. Matchmakers utilize different conversion methods, such as converting by distance [Dong-wei et al. 2006]

or by similarity [Qiu & Li 2008]. In Algorithm 1, we define the function convertConcept() to perform the

conversion by distance . This function converts the current concept called CChild to a high-dimensional position in

order to keep the same relation to the other concepts like in the ontology. First we generate the weight of CChild and

get the distance between CChild and its concept parent in the ontological tree. Afterwards, for each level in the tree

we produce two data, called al and bl, to store the 2-dimensional position of CChild . The function findConcept()

determines the position of CChild in the ontological tree. It returns four variables: CParent the parent concept of CChild; n

the number of children concepts of CParent; l the level of the position of CChild in the tree; i the index of CChild as the

child of CParent. .

Jiang & Sadaoui: Evaluating nnd Ranking Semantic Offers According to Users’ Interests

 Page 4

Figure 2: An Interest-based Offer Evaluation System

 convertConcept(CChild: String, Ontology: Tree, hdpcChild :Array)

 { 1. hdpcChild = void; //high-dimensional position of Cchild

 do {

2. findConcept (CChild , Ontology, CParent , n, l, i) ;

 // determine the position of CChild

3.

0;i if

n

)weight(C

0;i if1

)weight(C
ChildChild

 // calculate the weight of CChild

4. || CChild – CParent || = || weight(CChild) - weight(CParent) ||;

 // get distance between CChild to CParent

5.

);
n

360
cos(i||CC||)(Cb

);
n

360
sin(i||CC||)(Ca

ParantChildChildl

ParentChildChildl

 // get CChild 2-dimensional position (al, bl) at level l

6. add(hdpcChild, al(CChild), bl(CChild))

 // add the 2D position to hdpc

7. CChild = CParent // go up in the ontology

 } while l ≠1

8. return hdpcChild ;

 }

Algorithm 1: Concept Conversion to a High-Dimensional Position

Journal of Electronic Commerce Research, VOL 13, NO 1, 2012

 Page 5

2.2. Clustering Attribute Data

The goal of AttributeDataClustering component is to cluster the values of each attribute and send the resulting

clustering (represented as a tree structure) to the client side. Thanks to this clustering, our system is able to catch the

user’s interest for each attribute. The user is just required to select one of the attribute clustering to represent his

most interested area. In Algorithm 2, we present the clustering function clusterAttributeData() that is based on the

Self Organizing Map (SOM) [Kohonen 2001]. In our work, we apply SOM to recursively divide a large clustering

into three sub-clustering until there are less data in each sub-clustering. The reason we let SOM divide a clustering

into three groups is to arrange the attribute data as follows: a set of higher values, a set of lower values and a set of

values in the middle. This division will help the user to better examine and understand his interests. We include the

function isLargeEnough() to check whether a clustering Ai is still large enough or not. If the range of Ai is greater

than the minimal range of the attribute data, then we need to cluster Ai.

 In SOM of Algorithm 3, createLVQ() generates three random Learning Vector Quantizations (LVQi) in the

range of AttributeData; alpha (t) controls the learning loop and decreases with the learning time. During the learning

time, the function SOM() performs the competitive-learning given in step 3.1.1 and in step 3.1.3 updates the LVQi

positions according to the competitive-learning results [Kohonen 2001]. Since SOM updates the neighborhood of

each LVQ, we need a “neighborhood” function, hci(), to figure out how much the neighborhood of a LVQ can be

updated. In Appendix A, we give the implementation of SOM() in C#.

clusterAttributeData (AttributeData: Array, ClusteringTree: Tree)

{

1. MinRange = min (AttributeData);

 // calculate the minimum range

 2. SOM(AttributeData, A1, A2, A3);

 // cluster all data into 3 groups

 3. arrangeClustering (A1, A2, A3, ClusteringTree);

 // arrange clustering in ascending order

 4. for i = 1 to 3

 if (isLargeEnough (Ai, MinRange))

 clusterAttributeData(Ai, ClusteringTree);

 // cluster each sub-group

 5. return ClusteringTree;

 }

Algorithm 2: Attribute Data Clustering

 SOM (AttributeData: Array, A1: Array, A2: Array, A3: Array)

{ 1. t = 1; //initialize learning time

 2. createLVQ (AttributeData, LVQ1, LVQ2, LVQ3);

 // create random LVQi

 3. while (alpha(t) is not too small)

 // decrease alpha(t) by time t

 { 3.1 while (pop (AttributeData, x))

 // pop x from data set

 { 3.1.1 ||x - LVQc || = min{ ||x - LVQi ||};

 // find closest LVQc to x

 3.1.2 add(x, Ac);

 // add x into the closest cluster Ac

 3.1.3 LVQ(t+1) = LVQ(t) + hci(t)[x(t) - LVQ(t)];

 // update LVQi to be closer to x

 }

 3.2 t = t+1; //increase time t

 }

 4. return A1, A2, A3;

 }

Algorithm 3: SOM

Jiang & Sadaoui: Evaluating nnd Ranking Semantic Offers According to Users’ Interests

 Page 6

2.3. Computing Interest Weights of Offer Attributes

InterestWeightCalculator computes the interest weight of each attribute. This weight denotes the degree of

importance of an attribute. The interest weight is related to the depth and range of the selected clustering of the user.

The smallest and deepest clustering represents a more specific interest for the user. To produce the attribute’s

weight, we first determine the interest-weight coefficient of an attribute as shown in Formula (1) where: k is an

attribute, K the attribute set, AttributeData the data of k, SelectedClustering the user’s selected clustering for k,

SelectedLevelTree the level of the selected clustering, and TotalLevelTree the number of levels in the clustering tree.

The function Length() returns the length of the attribute interval i.e. the absolute difference between the two

attribute’s endpoints.

Kk
TreeTotalLevel

velTreeSelectedLe

usteringSelectedCl

ataAttributeD
coeIW

k

k

k

k

k
)Length(

)Length(
_

(1)

This coefficient has to be compared to the other attributes’ coefficients to produce the interest weight for an

attribute (cf. Formula (2)). An attribute with a larger coefficient gets a larger interest weight compared to the other

attributes.

Kk

IW_coe

IW_coe
IW

K

1k

k

k

k

(2)

2.4. Computing Interest Rates of Offer Attributes

InterestRateFunctionCreator produces the interest rate function of an attribute according to the user's selection.

A linear function is usually used to measure the attributes’ rates [Ha & Park 2001, Yu et al. 2006, Huang et al.

2008]. Nevertheless, in some cases, linear utility functions cannot assign weights to attributes in order to make a

certain offer as the best offer. We explain this issue with the example of Table 1. We are looking for the best stock

among three available stocks: Stock1 is low risk with low return, Stock3 is high risk with high return and Stock2 is

in the middle.

Table 1: Stock Data Example

Stock Risk Return
Stock1 0.1 0.1

Stock2 0.3 0.3
Stock3 1 1

Let us assume that the user considers Stock2 as the best offer. A linear utility function has to determine the

weights for the two attributes “Risk” and “Return”. However, we demonstrate below that these weights do not exist

when we want to make Stock2 as the best offer. Linear utility functions cannot make sure that each offer has a

chance to be the best one.

existnotdoWandW

0.7W0.7W

0.2W W0.2

1W1W0.3W0.3W

0.1W0.1W0.3W0.3W

Stock3n better tha is Stock2

Stock1n better tha is Stock2

ReturnRisk

ReturnRisk

ReturnRisk

ReturnRiskReturnRisk

ReturnRiskReturnRisk

To solve this problem, we use un-linear functions, such as the sigmoid function
x

+
=ς(x)

exp1

1
. This function

has few changes in the two intervals [-∞, -2] and [2, +∞]. Thus, in these two intervals, we can consider it as a linear

function. However, the interval [-2, 2] is the quickly changeable area. The user’s selected clustering represents his

interest for an attribute. In order to consider such interest in our interest rate function, we need to bind the user’s

selected clustering into the changeable interval [-2, 2] (cf. Figure3).

Journal of Electronic Commerce Research, VOL 13, NO 1, 2012

 Page 7

Figure 3: Sigmoid Function

Herein we explain how to produce the interest rate function for an attribute k, called ςk(). In Formula (3), x

indicates the value of an attribute; [AL, AR] the whole attribute data and [L, R] the selected clustering. We utilize

LVQ as the center of the function ςk(). LVQ is computed with the learning loops of the SOM algorithm. In fact,

LVQ point can be either in the selected clustering [L, R] or outside:

 If LVQ is inside [L, R], we decompose the interest rate function into two functions: ςk_Right() and ςk_Left() as

shown in Formula (3) where: αLeft is generated when binding [L, LVQ] into the interval [-2, 0]; αRight when

binding [LVQ, R] into [0, 2]. αLeft controls the shape of the left side of the rate function, and αRight its right side.

Sign is +1 or-1 depending if the interest rate function is increasing or decreasing (cf. Table2).

 If LVQ is outside of [L, R], the interest rate function can be either ςk_Right () or ςk_Left () depending on the

LVQ position: left outside or right outside of the selected clustering. For example, if LVQ is on the right side

of [L, R], we let ςk_Left () control the whole shape of the function since αRight() cannot be generated.

|LVQ - R| / 2- = α

2 tobinded is R R, = when x 0)- (2 · 1- = |LVQ -x | . α

|LVQ - L| / 2 = α

2- tobinded is L L, = when x0) - (-2 · 1- = |LVQ -x | · α

] LVQ[
exp1

1
ς

/

]LVQ L,[
exp1

1
ς

(x)ς

Right

Right

Left

Left

|)LVQ|(k_Right

|)LVQ|(k_Left

k

Left

AR,x
+

=(x)

orand

Ax
+

=(x)

=

xSign

xSign

Right

 (3)

Table 2: Interest Rate Function Shape

Sign Function and Image

+
xk

+
=(x)ς

-
exp1

1

- xk
+

=(x)ς
exp1

1

2.5. Evaluating the Offers with the Interest Model

The MNL model represents the utility function of an individual in a population. It includes the deterministic and

random components [McFadden 2001] as follows: Unj＝ Vnj + εnj , Cj

Jiang & Sadaoui: Evaluating nnd Ranking Semantic Offers According to Users’ Interests

 Page 8

where:

 Unj is the utility of the individual n selecting item j;

 Vnj is the “representative” or common taste of the population for item j;

 εnj is the individual taste for item j;

 C is the set of items.

In the formula below, the component Vnj consists of K observed deterministic features. Vnj contains the weight

bk for each feature xnjk [McFadden 2001]:

K

k

njnjkknj CjxbU
1

,

In our work, we still follow the idea of the MNL model. First we consider the deterministic features as the offer

attributes. Furthermore, we can decompose εnj into K attributes since εnj is the total alternative with K features. This

means the evaluation of the attributes may be different according to the interests of each individual. At the market

level, the individual taste ε is brought into the population model as a random utility [McFadden 1974]. Since it

comes from individuals and its value is random, ε is usually removed from the MNL function [Yu et al. 2006, Xu et

al. 2010]. However in our model, the individual taste becomes important. The population taste cannot cover each

user’s specific interests. By including the individual taste, we have a better chance to produce real and personalized

results. We propose Formula (4) to build our interest model.

Oj,)IR(IWIM
K

1k

njknjknj

 (4)

where:

 IMnj is the degree of interest of the user n selecting offer j with K attributes;

 IWjk is the interest weight (i.e. bk) of attribute k of offer j;

 IRjk is the interest rate (i.e. xjk +εj) of attribute k of offer j;

 O is the set of offers.

The OfferEvaluator component first builds the user’s interest model with Formula (4). Then it evaluates all the

candidate offers and gets their interest values. The offers are then sorted according to their interest values.

Table 3: Candidate Offers

Offer ID Category CPU (GHz) RAM

(GB)

Hard Drive

(GB)

Price ($)

1 Desktop 2.2 2 320 (420, 400)*

2 Netbook 2.2 3 640 (470, 370) *

3 Laptop 2.5 4 500 (600, 500) *

4 Everyday 2.33 8 1310 (1100, 800) *

5 Performance 2.4 8 750 (999, 799) *

6 Game 2.5 6 750 (1030, 830) *

7 All-in-one 2.66 12 1024 (2500, 2200) *

8 Server 2.3 12 960 (1000, 880) *

9 iPad 2.5 6 820 (1100, 799) *

10 Tablet 2.4 4 1200 (950, 900) *

11 Apple 2.8 6 620 (1200, 1150) *

12 Mac min (1.9, 1.9) * 10 1000 (800, 700) *

13 Mac Book (3.0, 3.0) * 16 1500 (2900, 2600) *

14 Mac Pro (1.8, 1.8)* 9 160 (680, 680) *

15 Mac Air (3.2, 3.2)* 12 2000 (3200, 2500)*

*: Two-dimensional Data

Journal of Electronic Commerce Research, VOL 13, NO 1, 2012

 Page 9

3. A Case Study with two Buyers

This experiment consists of purchasing computers based on five attributes: Category, CPU, RAM, Hard Drive

and Price. We assume here we have two buyers: Buyer1 and Buyer2, who submit the same request:

Purchase a computer with CPU ＞ 1.5 GHz, RAM ＞= 2.0 GB, Hard Drive ＞ 100 GB, Price < $3500 for the

first ten purchased computers and Price ＜ $3000 for the next ten.

We suppose the connected matchmaker returns the candidate offers given in Table 3 where Category is a

concept attribute, CPU and Price contain high-dimensional values. In the next phases, we show how our system

catches the purchasing interests of each buyer and determines the best offer.

3.1. Converting Concept Attributes

In Figure 4, we create the ontology of the attribute Category based on “bestbuy.com”.

Figure 4: Computer Ontology

By following Algorithm 1 of Section 2, we first compute the weight of each computer category and then its

distance to its parent node. In Table 4, we give the weight, distance and high-dimensional position of some

categories. In Figure 5, we show how to produce the dimensional position of a concept.

Figure 5: Concept Conversion

Jiang & Sadaoui: Evaluating nnd Ranking Semantic Offers According to Users’ Interests

 Page 10

Table 4: Examples of Concept Conversion

Category Weight Distance High-dimensional Position (a1, b1, a2, b2)

Computer 1 1 - 1 = 0 0, 0, 0, 0

Laptop 1/4 1- 1/4 = 3/4 0, -0.75, 0, 0

Desktop 1/4 1- 1/4 = 3/4 -0.75, 0, 0, 0

Tablet 1/4 1- 1/4 = 3/4 0, 0.75, 0, 0

Apple 1/4 1- 1/4 = 3/4 0.75, 0, 0, 0

Netbook 1/8 1/4-1/8 = 1/8 0, -0.75, -0.125, 0

Laptop 1/8 1/4-1/8 = 1/8 0, -0.75, 0.125, 0

3.2. Clustering Attribute Data

Our system displays via the GUI the clustering tree of each attribute (cf. Figure 9). Figures 6, 7 and 8 illustrate

respectively the clustering of Hard Drive, CPU and Category. For the Category attribute, we give the concept view,

and in Appendix B the position view. Since LVQs are randomly initialized (cf. Algorithm 3), sometimes one or

more LVQs may be far away from the attribute data. Consequently, the corresponding clustering will not include

any value. That is why in Figures 6, 7 and 8, some clustering have less than three sub-clustering.

Figure 6: Hard-Drive Data Clustering

Figure 7: CPU Data Clustering

Journal of Electronic Commerce Research, VOL 13, NO 1, 2012

 Page 11

Figure 8: Category Data Clustering (Concept View)

Each buyer can now select his most interested clustering for each attribute as shown in Figure 9 for Buyer1.

With these selections, our system will know the range and depth of each buyer’s purchasing interests. Table 5 is an

example of the interests of Buyer1 and Buyer2. For CPU and RAM, both buyers selected a clustering in level 1

because they have no special interests in these two attributes. Buyer1 may have a less interest in CPU than Buyer2

since he chose a larger clustering range. For the same reason, Buyer2 may have less interest in RAM. Buyer1

focuses on lower price and Hard Drive. Buyer2 is the opposite buyer who wants a higher Hard Drive with an

acceptable price. Moreover, Buyer1 is looking for a desktop computer while Buyer2 is interested in Apple products.

Figure 9: Selected Clustering of Buyer1

Jiang & Sadaoui: Evaluating nnd Ranking Semantic Offers According to Users’ Interests

 Page 12

Table 5: Selections of Both Buyers

 Buyer1 Buyer2

CPU Clustering [2.2, 2.8] [(3,3), (3.2, 3.2)]

Level 1 1

RAM Clustering (2, 4) (9, 16)

Level 1 1

Hard Drive Clustering (820, 1024) (1200, 1500)

Level 2 3

Price Clustering [(420, 400), (600,

500)]

[(999, 799), (1200, 1150)]

Level 3 2

Category Clustering [Desktop, …, Server] [Apple, ..., MacBook-Air]

Level 1 2

3.3. Computing Interest Weights of Offer Attributes

We give here an example on how to calculate the interest weights. Buyer1 selected the CPU clustering [2.2, 2.8]

which is at level 1 of the 5-level CPU tree and all CPU data are in the range of [2.2, (3.2, 3.2)]. Thus, the interest-

weight coefficient of CPU is 1.1167. We perform the same calculation for the other attributes: Price with a

coefficient of 10.1521, Category with 0.9934, RAM with 2.3333 and Hard Drive with 3.6078. Buyer1’s CPU

interest weight for our 5-attribute application is as follows:

0613.0
9934.06078.33333.21521.101167.1

1167.1

CPU_Buyer1IW

According to the interest-weight calculation performed by our system (cf. Figure 10), we can see that Price

(with a weight of 0.5577) is the most important attribute for Buyer1. For the other attributes, Hard Drive (0.1982) is

more important than RAM (0.1282) and CPU (0.0613). And CPU is less preferred than RAM. Such interests will

help our system to understand Buyer1’s needs. Buyer2 has another purchasing interest. If we compare the two

buyers, we can see that Buyer2 is more interested in CPU and Hard Drive than Buyer1. This result corresponds to

the buyers’ selections: Buyer2 has selected a narrower clustering for these two attributes.

Figure 10: Interest Weights for Both Buyers

3.4. Computing Interest Rates of Offer Attributes

For each buyer, we generate the interest rate functions for the five attributes by binding the selected clustering

into the quickly changeable area. First we give an example on how to generate LVQs during the SOM learning time

for high-dimensional attributes like CPU (cf. Table 6).

Journal of Electronic Commerce Research, VOL 13, NO 1, 2012

 Page 13

Table 6: LVQ Generation for CPU

To be able to produce the interest rate function for high-dimensional attributes, we need first to compute the

distances between the attribute data and the best attribute value. For example in Table 7, we give the distances for

CPU regarding Buyer1. Buyer1’s selection of [2.2, 2.8] has a LVQ of (2.2654, 0.2979); the clustering [3.2, 3.2] is

the best attribute value.

Table 7: Distances of High-Dimensional Data

x BestAttributeData Distance(x, BestAttributeData)
2.2 *** (3.2, 3.2) 3.3526
2.8 ** (3.2, 3.2) 3.2249

(2.2654, 0.2979)* (3.2, 3.2) 3.0489
***Min selection value (L), **Max selection value (R), *LVQ

In Table 8, we produce the interest rate function of CPU for Buyer1. This function is depicted in Figure 11. We

may note that LVQ distance of 3.0489 is right outside of the selected clustering distance of [3.3526, 3.2249].

Table 8: ςCPU() Generation for Buyer1

[AL, AR] Distance

(LVQ, BestAttributeData)

αLeft αRight Sign

[2.2, (3.2,3.2)] 3.0489 6.5848 N/A +1

[L, R]

[2.2, 2.8]

αLeft = 2 / | Distance(L, BestAttributeData) - Distance(LVQ, BestAttributeData) |

= 2 / | 3.3526 – 3.0489 | = 6.5848

] (3.2,3.2) ,2.2[,
exp1

1
)(ς

exp1

1
)(ςς

|0489.3))2.3,2.3,((tan|5848.6CPU_Left

|]uteData)BestAttribLVQ,(tan),(tan|[CPU_LeftCPU
Left

x
+

x=

+
x=(x)

xceDis

ceDisuteDataBestAttribxceDisSign

 In Figure 11, most offers have lower CPU interest rates in the range of [0.11, 0.24]. Four offers have higher

CPU interest rates: Offer15 (3.2, 3.2) with an interest rate of 0.9999; Offer 14 (1.8, 1.8) with 0.9991; Offer13 (3, 3)

with 0.9999; Offer12 (1.9, 1.9) with 0.9997.

In Table 9, we produce the rate function for Buyer2. LVQ for the selected clustering [(3.0, 3.0), (3.2, 3.2)] is

(2.8818, 2.9115). Thus the distance of LVQ to the best attribute data is 0.4295. LVQ is left outside of the selected

clustering. Thus, the generated CPU interest rate function for Buyer2 has only ςRight() (cf. Figure 12).

Initial LVQ1 (1.85, 0.5)

 LVQ2 (2.98, 2.5)

 LVQ3 (2.01, 1.54)

Loop1 Input x (2.2,0) … (3.2, 3.2)

 LVQ1 (1.8506, 0.4991) … (1.8565194, 0.4937947)

 LVQ2 (2.9799, 2.4999) … (2.9802438, 2.5018309)

 LVQ3 (2.0100, 1.5398) … (2.0097686, 1.53987435)

Loop2 LVQ1 (1.8565265, 0.49378457) … (1.8565933, 0.49372432)

 LVQ2 (2.9802438, 2.50183087) … (2.9802465, 2.50185127)

 LVQ3 (2.0097691, 1.53987249) … (2.0097661, 1.53987294)

Loop3 … … … …

…

Jiang & Sadaoui: Evaluating nnd Ranking Semantic Offers According to Users’ Interests

 Page 14

Figure 11: CPU Interest Rate Function for Buyer1

Table 9: ςCPU() Generation for Buyer2

[AL, AR] Distance

(LVQ, BestAttributeData)

αLeft αRight Sign

[2.2, (3.2,3.2)] 0.4295 N/A -4.6564 +1

[L, R]

[(3.0,3.0), (3.2, 3.2)]

αRight = -2 / | Distance(R, BestAttributeData) - Distance(LVQ, BestAttributeData) |

= -2 / | 0 – 0.4295 | = -4.6564

 (3.2,3.2) 2.2,
exp1

1
)(ς

exp1

1
)(ςς

|4295.0))2.3,2.3(,(tan|6564.4CPU_Right

|]uteData)BestAttribLVQ,(tan),(tan|[CPU_Right2CPU_Buyer
Right

x
+

x=

+
x=(x)

xceDis

ceDisuteDataBestAttribxceDisSign

Figure 12: CPU Interest Rate Function for Buyer2

Journal of Electronic Commerce Research, VOL 13, NO 1, 2012

 Page 15

As we can see in Figure 12, only two offers have higher CPU interest rates: Offer15 (3.2, 3.2) with a rate of

0.8808 and Offer 13 (3, 3) with 0.6644. The other offers have lower CPU interest rates, less than 0.1, because they

are far away from the selected clustering.

If we compare the two interest rate functions of Figure 11 and 12, we find out that most CPU attributes in offers

are acceptable for Buyer1, while Buyer2 only interests the largest CPU. CPU interest rates of Offer12 and Offer14

for both buyers are obviously shown their different interest focus.

3.5. Evaluating the Offers with the Interest Model

After our system gets the interest weights and interest rate functions for the five attributes, it generates the

interest model (IM) for both buyers as follows.

IMBuyer1(Offer)= 0.0613· ϛ CPU(CPU) + 0.1282· ϛ RAM(RAM) + 0.1982· ϛ HardDrive(HardDrive) +

0.5577· ϛ Price(Price) + 0.0546 · ϛ Category (Category)

IMBuyer2(Offer)= 0.1966· ϛ CPU(CPU) + 0.0548· ϛ RAM(RAM) + 0.3023· ϛ HardDrive(HardDrive) +

0.2831·ϛ Price(Price) + 0.1632 · ϛ Category (Category)

For instance, we show below how the interest model calculates the interest value for the first offer:

 IMBuyer1(Offer1) = 0.0613·ϛ CPU(2.2) + 0.1282·ϛ RAM(2) + 0.1982·ϛ HardDrive(320) +

0.5577·ϛ Price[(420,400)] + 0.0546· ϛ Category([Desktop, …, Server])

= 0.0613·0.119202 + 0.1282·0.119207 + 0.1982·0.0015 + 0.5577·0.8800 + 0.0546· 0.8808

= 0.5618

IMBuyer2(Offer1) = 0.1966·ϛ CPU(2.2) + 0.0548·ϛ RAM(2) + 0.3023·ϛ HardDrive(320) + 0.2831· ϛ Price[(420,400)]

+ 0.1632·ϛ Category([Apple, …, MacBook-Air])

= 0.1966·3.93E-07 + 0.0548·1.15E-08 + 0.3026·1.3E-09 + 0.2831·0.9994 + 0.1632· 0.8702

= 0.4250

So, we obtained an interest value of 0.5618 for Buyer1 and 0.4250 for Buyer2. Based on these values, we can

conclude that Buyer1 has a higher interest for Offer1 than Buyer2. With our interest model, the system evaluates all

the candidate offers of Table 3. Our system returns a ranked list of offers for both buyers as shown in Tables 10:

Offer1 is the best offer for Buyer1 and Offer15 the best offer for Buyer2.

Table 10: Offer Evaluation and Ranking

Offer

ID

IMBuyer1 Offer

ID

IMBuyer2

1 0.5618 15 0.6553
2 0.5535 13 0.5852

3 0.4736 4 0.5292

15 0.4345 12 0.4488
13 0.4314 14 0.4302

4 0.3703 2 0.4254
12 0.3667 1 0.4250

14 0.3460 3 0.4248

10 0.3356 10 0.4219
7 0.2797 8 0.4183

8 0.2537 5 0.3924
9 0.2135 6 0.3804

5 0.2069 9 0.3672
6 0.2056 7 0.1796

11 0.1946 11 0.1775

Jiang & Sadaoui: Evaluating nnd Ranking Semantic Offers According to Users’ Interests

 Page 16

4. Transport Usage Application

For the second experiment, we consider a database containing 840 user selections of four types of travel

transport: by AIR, TRAIN, BUS and CAR [Greene 2010, Multinomial Choice 2010] (cf. Figure 13). In total, there

are 210 users and each of them selected his best transport. The selected transport is represented by the attribute

MODE with value 1, and the unselected one with value 0. For example, the first four rows are the choices of User1:

the first three rows are respectively the unselected transport AIR, TRAIN and BUS; the fourth row is the selected

transport CAR. For our experiment, we only focus on four attributes: TTME (Terminal TIME), INVC (IN Vehicle

Cost), INVT (IN Vehicle Time) and GC (Generalized Cost of travel model) among the fourteen observed attributes

given in [Multinomial Choice 2010].

Figure 13: 840 Observations on Transports Usage

We now apply our interest model to the database of Figure 13 in order to generate the best transport for each

user. We consider each row as an offer. Thus, we have 840 offers. Our system clusters 840 data for each attribute,

and produces four clustering trees for the attributes TTME, INVC, INVT and GC. Figure 14 depicts the clustering

tree of TTME.

Figure 14: TTME Clustering Tree

Each user is required to select his most interested clustering for the four attributes in order to produce his

interest model. For this experiment, we need in total 820 clustering selections. Since we cannot acquire all the users’

selections, we assume here that each user chooses the largest clustering which contains the attribute values

corresponding to the selected transport. We call this largest clustering SLC. In Figure 14, the highlighted clustering

Journal of Electronic Commerce Research, VOL 13, NO 1, 2012

 Page 17

represents SLC for User1 since it is the largest clustering containing the value 0 and not the values 69, 34 and 35 for

the attribute TTME. The value 0 of TTME (fourth row of Figure 13) corresponds to User1’s selected transport.

For our experiment, we only employ SLC as the users’ selections for the four attributes. Table 11 shows the

results returned by our evaluation system for 50 users. We need to manually select 200 SLCs for the 50 users. Our

interest model accuracy rate is 40% when selecting the largest clustering. We may note that the accuracy is strongly

dependent on the users’ selections. Our interest model may have better evaluation results if we have the real users’

selections. In addition, the smallest and deepest clustering in the tree will provide better results.

Table 11: Best Transports for 50 Users

Users User Selected Transport IM Best Transport
User1 Car Car

User2 Car Car
User3 Car Car

User4 Car Car

User5 Car Car
User6 Train Air

User7 Air Train
User8 Car Bus

User9 Car Car
User10 Car Car

User11 Car Car

User12 Car Car
User13 Car Car

User14 Car Car
User15 Car Car
…

User17 Train Train
…

User20 Train Train
…

User23 Air Air
…

User25 Air Air
…

User41 Air Air
…

User43 Air Air
…

User46 Air Air
…

User49 Air Air
User50 Air Bus

In Table 12, we measure the performance of our system for the applications of sections 3 and 4. All running

time includes the interaction with the database system. We can see that our system runs with a very good

performance. We cannot experimentally compare the efficiency between our system and other ranking methods

since there are no standard and public datasets for semantic matchmaking and ranking.

Table 12: System Performance

 15 Offers (5 attributes) 840 Offers (4 attributes)

Clustering (Server) 580.2476 ms 110,284.265 ms

IW (Client) 13.4154 ms 51.6797 ms

IR (Client) 219.3452 ms 4,794.4967 ms

Evaluation (Client) 200.5748 ms 10,678.3938 ms

Total Time 1013.583 ms 12,5808.8 ms

Jiang & Sadaoui: Evaluating nnd Ranking Semantic Offers According to Users’ Interests

 Page 18

5. Related Work

In the early time of e-commerce, matchmakers matched buyers with suppliers by mapping the attributes of the

request and offers [Ha & Park 2001]. On the Internet, requests and offers are expressed in different schemas and

words even when representing the same semantic meaning. This caused the early matchmakers to be blind to some

potential offers. To solve this problem, semantic matching models, based on the ontologies, have been

proposed. [Kawamura & Hasegawa 2005] matches services with the request by using a semantic filtering supported

by the ontology. [Qiu & Li 2008] proposes an ontology similarity table to identify all the similar concepts of the

request and offers. [Dong-wei et al. 2009] defines logical relationships in the ontology to map the concepts of

request and offers.

Nevertheless, these matchmakers return an unranked list of candidate offers. So, the user needs to spend a lot of

time evaluating the offers in order to find the best offer. Several ranking models have been introduced to sort the

offers. [Dong-wei et al. 2006] introduces a distance measurement between the request concept node to the offer

concept node in the ontology. [Di Noia et al. 2007a] presents a penalty function to convert the logical relationships

in the ontology to digital values. The penalty values are then used to rank the offers. [Bener et al. 2009] assigns

scores to the logical relationships. [Huang et al. 2008] utilizes a ranking function based on the user’s attribute

weights. [Shen et al. 2006] combines both concept ranking and constraint ranking. It analyzes each keyword and

constraint appearing in the request and offer, and then calculates the offer fitness rate. In [Hahn et al. 2008],

matching and ranking are based on the semantic similarity of the request model and offer model. We may note that

most ranking criteria are defined by the system developers. Indeed, these ranking models dismiss the user’s own

ranking criteria. Users may have to accept a system believed best offer. In our research work, we take into

consideration the user's interests to have a better chance to produce real and personalized results.

Furthermore, the above ranking methods map the functional properties of offers with the request’s functional

description. However, these methods cannot explain why sometimes the user prefers an offer that is different from

the best recommended offer. [Yu & Reiff-Marganiec 2008] argues that the user’s choice may be affected by other

criteria often referred to as non-functional properties. Some methods have been proposed to handle the non-

functional properties [Wang et al. 2006, Liu et al. 2009]. Since these non-functional properties functions are linear,

they cannot make sure that each offer has a chance to be the best offer. In our work, we avoid this problem with our

un-linear interest model.

In [Skoutas at al. 2010], the authors point out that any single matching criterion is not good enough to determine

the best offer with multiple attributes. In addition, they are complex trades-off situations between attributes. The

existing ranking models are only based on ranking the values of query words, functional or non-functional

parameters, but not on ranking offers with individual’s interests. The latter are the real reasons explaining why an

individual selects a specific offer. Our research goal is to develop a more user-oriented and personalized system to

evaluate the offers.

Most recommender systems utilize the collaborative filtering method to find the best item for the user [Zhan et

al. 2010, Chandrashekhar & Bhasker 2011, Shambour & Lu 2011]. This method evaluates an item according to the

other users' ratings. Other research work, like [Coleho at al. 2010], integrates the user’s personality into the

recommender system. Creating such user model requires a large set of user information, and sometimes the user

does not leave any information. Recommender and matchmaking systems share the same goal: determine the best

item for the user. However, there are major differences between these two systems: (1) matchmaking systems

compute how much an offer is close to the user’s request. They rank the offers based on the semantic matching

degree between the query and offer [Di Noia et al. 2007a, Skoutas et al. 2010]. Matchmakers discover offers by

mapping one by one the attributes of the offer and request; (2) recommender systems try to predict the user’s

rating for an item based on other users’ ratings for this item. They do not examine each item attribute but consider

an item as a whole.

Compared to our work, the accuracy of the results returned by the recommender systems is much lower since

they recommend an item that is preferred by the other users with similar tastes. Our offer evaluation system

determines the best offer by taking into consideration only the interests of the user. Furthermore, the recommender

systems process a large database of user information. To evaluate the offers, our system requires very few inputs

from the user. For each attribute, the user just needs to click on one clustering to make a selection.

6. Conclusion and Future Work

In this paper, we showed the benefits of sorting the request-matched offers according to the user’s interests. By

adopting the well-known economic MNL model, we produced an automated interest model that determines the best

offer based on to the user’s specific needs. The proposed system provides a more user-oriented and personalized

solution for evaluating the offers and avoids the linear matching problems.

Journal of Electronic Commerce Research, VOL 13, NO 1, 2012

 Page 19

There are several possible directions of this work. The first one is to compare our interest model with the MNL

model by using the transport usage application. The second direction is to include the interest learning [Wei et al.

2005] in our offer evaluation system. The main purpose of this learning is to update the interest model to fit the

user’s interests instantly. A learned interest model will be able to determine the best offer in these two following

situations: the user shifts his interests, or new matched offers are added in our system database. Last but not least,

we are interested in producing personalized attribute clustering trees specifically for each buyer because buyers may

have different knowledge, experience, attitude, etc. Also, using users’ feedbacks [Palanivel & Sivakumar 2010] may

improve the system results. Our system will be able to better understand each buyer's interests with these features

and feedbacks.

Acknowledgment

The authors wish to thank the NSERC Individual Discovery Grant of Canada for its support of this research.

REFERENCES

Bellur, U., and H. Vadodaria, “Web Service Ranking Using Semantic Profile Information,” International

Conference on Web Services, IEEE, pp 872-879, 2009.

Bener, A. B., V. Ozadali, and E. S. Ilhan, “Semantic matchmaker with precondition and effect matching using

SWRL”, Expert Systems with Applications, Vol. 36, No 5: 9371-9377, 2009.

Chabeb , Y., S. Tata, and A. Ozanne, "YASA-M: A Semantic Web Service Matchmaker," International Conference

on Advanced Information Networking and Applications, IEEE, pp 966-973, 2010.

Chandrashekhar, H., and B. Bhasker, “Personalized Recommender System Using Entropy Based Collaborative

Filtering Technique,” Journal of Electronic Commerce Research, Vol. 12, No. 3, pp 214-237, 2011.

Chen, Y. Y., and K. Y. Young, “Applying SOM as a Search Mechanism for Dynamic System,” 44th IEEE

Conference on Decision and Control and European Control Conference, pp 4111- 4116, 2005.

Cheng, T.W., W.L. Wang, and A. P. Chen, “E-marketplace using artificial immune system as matchmaker” ,

International Conference on e-Commerce Technology, IEEE, pp 358-361, 2004.

 Coleho, B., C. Martins, and A. Almeida, "Web Intelligence in Tourism: User Modeling and Recommender

System", Web Intelligence and Intelligent Agent Technology, (WI-IAT), IEEE/WIC/ACM, pp 619-622, 2010.

Di Noia, T., E. Di Sciascio, and F. M. Donini, “Semantic matchmaking as non-monotonic reasoning: a description

logic approach”, Journal of Artificial Intelligence Research, Vol. 29: 269-307, 2007a.

Di Noia, T., E. Di Sciascio, and F. M. Donini, “A nonmonotonic approach to semantic matchmaking and request

refinement in E-marketplaces”, International Journal of Electronic Commerce, Vol. 12, No 2: 127-154,

2007b.

Dong-wei, B., F. Ai-guo, and C. Shan-fa, “Semantic Matchmaking of Web Services Constraint Conditions”, 5th

International Conference on Wireless Communications, Networking and Mobile Computing, IEEE, pp 1-5,

2009.

Dong-wei, B., L. Chuan-Chang, P. Yong, and C. Jun-liang, “Web Services Matchmaking with Incremental Semantic

Precision”, International Conference on Wireless Communications, Networking and Mobile Computing, IEEE,

pp 1-4, 2006.

Essex, D., “Matchmaker, matchmaker”, Communications of the ACM, Vol. 52, No. 5: 16-17, 2009.

Greene, W., “Discrete Choice Modeling”,

 http://pages.stern.nyu.edu/~wgreene/DiscreteChoice/Lectures/HEDGPart8-MultinomialLogit.ppt, 2011.

Guo, W., “Ontology Design for Supporting Matchmaking in E-commerce”, International Symposium on

Information Science and Engineering, pp 410-413, 2008.

Ha, S. H., and S. C. Park, “Matching users and suppliers: an intelligent dynamic exchange model”, Intelligent

Systems, IEEE, Vol. 16, No. 4: 28- 40, 2001.

Hahn, C., S. Nesbigall, S. Warwas, I. Zinnikus, M. Klusch, and K. Fischer, “Model-Driven Approach to the

Integration of Multi-Agent Systems and Semantic Web Services”, 12th Enterprise Distributed Object

Computing Conference Workshops, IEEE, pp 314-324, 2008.

Huang, R., Y. W. Zhuang, J. L. Zhou, and Q. Y. Cao, “Semantic Web-based Context-aware Service Selection in

Task-computing”, International Workshop on Modelling, Simulation and Optimization, pp 97-101, 2008.

Kawamura, T., and T. Hasegawa, A. Ohsuga, M. Paolucci, and K. Sycara, “Web services lookup: a matchmaker

experiment,” IT Professional, IEEE, Vol. 7, No. 2: 36-41, 2005.

Klusch, M., P. Kapahnke, and F. Kaufer, "Evaluation of WSML Service Retrieval with WSMO-MX", International

Conference on Web Services, IEEE, pp 401-408, 2008.

Kohonen, T., “The Self-Organizing Map”, 3rd Edition, Springer –Verlag, New York Inc., 2001.

http://pages.stern.nyu.edu/~wgreene/DiscreteChoice/Lectures/HEDGPart8-MultinomialLogit.ppt

Jiang & Sadaoui: Evaluating nnd Ranking Semantic Offers According to Users’ Interests

 Page 20

Kreger, H., “Web Services Conceptual Architecture (WSCA 1.0)”, IBM Software Group, 2001.

Liu, Y., N. A. H. H. Ngu, and L. Z. Zeng, “QoS Computation and Policing in Dynamic Web Service Selection”,

International Conference on Service Oriented Computing (ICSOC), Stockholm, Sweden, pp 23-27, 2009.

McFadden, D., “Conditional Logit Analysis of Qualitative Choice Behavior”, Frontiers in Econometrics. Edition P.

Zarembka, Academic Press: New York, pp 105-142, 1974.

McFadden, D., “Economic Choices, ``American Economic Review’’, American Economic Association, Vol. 91, No.

3: 351-378, 2001.

Palanivel, K., and R. Sivakumar, “A Study on Implicit Feedback in Multicriteria E-Commerce Recommender

System”, Journal of Electronic Commerce Research, Vol. 11, No. 2, pp 140-156, 2010.

Park, A. Y., and U. Gretzel, “Influence of Consumers’ Online Decision-Making Style On Comparison Shopping

Proneness And Perceived Usefulness of Comparison Shopping Tools,” Journal of Electronic Commerce

Research, Vol. 11, No. 4, pp 342-354, 2010.

Qiu, T., and P. F. Li, "Web Service Discovery Based on Semantic Matchmaking with UDDI," 9th International

Conference for Young Computer Scientists, pp1229-1234, 2008.

Qu, C.T., F. Zimmermann, K. Kumpf, R. Kamuzinzi, V. Ledent, and R. Herzog, "Semantics-Enabled Service

Discovery Framework in the SIMDAT Pharma Grid", Transactions on Information Technology in

Biomedicine, IEEE , Vol. 12, No 2: 182-190, 2008.

Reiff-Marganiec, S., H.Q. Yu, and M. Tilly, “Service selction based on non-functional properties”, In Proceedings

of Non Functional Properties and Service Level Agreements in Service Oriented Computing Workshop,

Springer, 2007.

Shambour, Q., and J. Lu, "Integrating Multi-Criteria Collaborative Filtering and Trust Filtering for Personalized

Recommender Systems", Computational Intelligence in Multicriteria Decision-Making (MDCM), IEEE

Symposium, pp 44-51, 2011.

Shen, X., X. Jin, R. F. Bie, and Y. C. Sun, “MSC: A Semantic Ranking for Hitting Results of Matchmaking of

Services”, 30th Annual International Computer Software and Applications Conference, IEEE, pp 291-296,

2006.

Skoutas, D., D. Sacharidis, A. Simitsis, and T. Sellis, "Ranking and Clustering Web Services Using Multicriteria

Dominance Relationships", Services Computing, IEEE, Vol.3, No 3: 163-177, 2010.

Wang, H., and Z. Z. Li, “A Semantic Matchmaking Method of Web Services Based on SHOIN^+ (D)*,” Asia-

Pacific Services Computing Conference, IEEE, pp 26-33, 2006

Wang, X., T. Vitvar, M. Kerrigan, and I. Toma, “A QoS-aware selection model for semantic web services,” 4th

International Conference on Service-Oriented Computing, pp 390–401, 2006.

Wei, Y. Z., L. Moreau, and N. R. Jennings, “Learning users' interests by quality classification in market-based

recommender systems”, Transactions on Knowledge and Data Engineering, IEEE, Vol. 17, No. 12: 1678-

1688, 2005.

Xu, C., W. Wang, Z. B. Li, and C. Yang, "Comparative study on drivers' route choice response to travel information

at different departure time", 2nd International Asia Conference on Informatics in Control, Automation and

Robotics, IEEE, No. 3: 97-100, 2010.

Yu, H.Q., and S. Reiff-Marganiec, “Non-Functional Property based Service Selection: A Survey and Classification

of Approaches”, Non Functional Properties and Service Level Agreements in Service Oriented Computing

Workshop, ECOWS, IEEE, 2008.

Yu, S. H., Y. J. Li, and X. B. Yan, "A Spatial Neural Network Application in Consumer Spatial Behavior

Modeling", International Conference on Machine Learning and Cybernetics, IEEE, pp 3044-3047, 2006.

Zhan, J., C. L. Hsieh, I. C. Wang, T. S. Hsu, C. J. Liau, and D. W. Wang, "Privacy-Preserving Collaborative

Recommender Systems", Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE, Vol. 40,

No 4: 472-476, 2010.

“Multinomial Choice Travel Mode Data Set”, http://pages.stern.nyu.edu/~wgreene/DiscreteChoice/Data/clogit.lpj,

2011.

http://pages.stern.nyu.edu/~wgreene/DiscreteChoice/Data/clogit.lpj

Journal of Electronic Commerce Research, VOL 13, NO 1, 2012

 Page 21

Appendix A: SOM () Function

/* Related class member variables */

private double[] A1_LVQ; // LVQ1

private double[] A2_LVQ; // LVQ2

private double[] A3_LVQ; // LVQ2

private ArrayList A1_offer_id = new ArrayList(); // A1

private ArrayList A2_offer_id = new ArrayList(); // A2

private ArrayList A3_offer_id = new ArrayList(); // A3

private void SOM (DataTable attribute_table, int dimension, DataTable root_attribute_table, int level)

{ /* Initialize Data Values */

double LVQ1_distance =0;

double LVQ2_distance =0;

double LVQ3_distance =0;

int learn_time =1;

this.CreateLVQ (dimension, attribute_table); /* Create Random LVQ */

/* Learning Loop */

while (this.GetLearningRate (learn_time) > 0.0001)

 //Check if it need learning again

{ // Pick up value x

for (int i=0; i<attribute_table.Rows.Count; i++) {

for (int j=1; j<=dimension; j++) {

 // Calculating distance between x to LVQ1 through the loop

 LVQ1_distance += Math.Pow (

(System.Convert.ToDouble (attribute_table.Rows[i][j])

 - this.A1_LVQ[j-1]), 2.0);

 // Calculating distance between x to LVQ2 through the loop

 LVQ2_distance += Math.Pow (

 (System.Convert.ToDouble (attribute_table.Rows[i][j])

 -this.A2_LVQ[j-1]), 2.0);

 // Calculating distance between x to LVQ3 through the loop

 LVQ3_distance += Math.Pow (

 (System.Convert.ToDouble (attribute_table.Rows[i][j])

 - this.A3_LVQ[j-1]), 2.0);

}

// Get each LVQ distance to x

LVQ1_distance = Math.Round (Math.Sqrt (LVQ1_distance), 2);

LVQ2_distance = Math.Round (Math.Sqrt (LVQ2_distance), 2);

LVQ3_distance = Math.Round (Math.Sqrt (LVQ3_distance), 2);

// Find the closest LVQ to x

this.FindWinnerLVQ (LVQ1_distance, LVQ2_distance,

LVQ3_distance, System.Convert.ToInt32 (attribute_table.Rows[i][0]));

this.updateLVQ (i, dimension, attribute_table,

LVQ1_distance, LVQ2_distance, LVQ3_distance,

this.GetLearningRate (learn_time), root_attribute_table);

// Update LVQi

LVQ1_distance = 0;

LVQ2_distance = 0;

LVQ3_distance = 0; // Clear LVQ distance for next input x

}

learn_time ++; // Learning time update

if (this.GetLearningRate (learn_time) > 0.01)

{ // Prepare for next learning

Jiang & Sadaoui: Evaluating nnd Ranking Semantic Offers According to Users’ Interests

 Page 22

 A1_offer_id = new ArrayList();

A2_offer_id = new ArrayList();

 A3_offer_id = new ArrayList();

}

 }

}

/* SOM sub-function

* Find the closest LVQc to x

* Put x into LVQc related cluster */

private void FindWinnerLVQ (double distance1, double distance2, double distance3, int current_row) {

int winner = 0;

/* Find the closest LVQ based on distance */

if (distance1 <= distance2){

 if (distance1 <= distance3) { winner = 1; }

 else { winner = 3; } }

else{

 if (distance2 <= distance3) { winner = 2; }

 else { winner = 3; } }

/* Put x in Ac

* The Ac could be temporary.

* It depends on when the learning loop stop.

* The last time generated Ac is the final result */

if (winner == 1) { this.A1_offer_id.Add (current_row); }

if (winner == 2) { this.A2_offer_id.Add (current_row); }

if (winner == 3) { this.A3_offer_id.Add (current_row); }

}

Appendix B: Clustering Category (position view)

