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ABSTRACT 

 

The pervasive use of mobile devices and location-based services has supported the generation of large spatio-

temporal datasets reflecting user movement behavior. However, studies on such type of data have depended heavily 

on geographic overlapping, and information about the time of day of travel visits has been overlooked. In this paper, 

we proposed an efficient method for mining user movement similarity based on users’ travel histories as recorded by 

GPS trajectories. Our approach also allowed consideration of related temporal effects. To that end, first we introduced 

a partition method to divide the trajectories into a set of line segments that allowed us to explore the correlation 

between users and their visited territories. Significantly, we proposed a characteristic point mapping method to 

transform the sparse GPS trajectories into a set of transactional data. Based on this data, we conducted a series of data 

mining procedures for efficient discovery of the users’ movement information. Second, we proposed a novel, low-

rank matrix factorization-based method to cluster users’ movements into groups based on their similarity, including 

temporal characteristics. The experimental results demonstrated that the proposed method can be used to mine the 

popular roaming routes of users or similar movements efficiently while including temporal patterns. This approach 

can prove valuable for the development of location-based social network recommendations and human mobility 

prediction.  
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1. Introduction 

As the popularity of smart phones and other GPS-enabled mobile devices continues to grow, location acquisition 

technologies have become increasingly pervasive, leading to the collection of large spatio-temporal datasets about 

user movement behavior [Lin et al. 2014; Koutsiouris et al. 2016]. Relatively easy access to large amounts of spatio-

temporal data, specifically GPS trajectories, provides an opportunity to discover valuable geographic information 

concerning individual mobility. In turn, deeper understanding of user movement behavior provides enormous business 

opportunities with regard to geographic navigation and location-based recommendations [Zheng 2011] by recognizing 

numerous traffic activities from both the pedestrian side and the transportation side [Liao et al. 2005; Ghourchain 

2016]. 

Recently, user movement similarity has become particularly significant for location-based social network 

recommendations [Li et al. 2008; Cho et al. 2011] and human mobility prediction [Do et al. 2015], Consequently, 
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research that measures user movement similarity based on travel trajectories has attracted considerable attention [Lv 

et al. 2013; Chen et al. 2014]. However, for current GPS-enabled applications, collecting information about the 

similarity of users’ trajectories is often difficult and inefficient for the following three reasons: 

(1) First, when users turn the GPS-enabled devices on and off casually, the recorded GPS data are often non-

uniform, sparse, or lost, and the data collected may be inconsistent with the end-points. Therefore, any two 

trajectories might not be identical even if they recorded the same path. For instance, see the sample 

trajectories of TR1 and TR2 in Figure 1. They have been used to record the movements of user1 and user2 on 

the same path. However, the GPS data points in TR1 and TR2 are rarely identical. 

(2) Second, large amounts of GPS point data are recorded in a trajectory (especially in the case of high recording 

frequency), but only a few of the data are key to exhibiting interesting geographic information about a user’s 

travel [Zheng 2015]. For example, in Figure 1, the “meaningless roaming” data points on TR1 may be motion 

noise involved in user1’s movement. 

(3) Third, human geographical movement has always exhibited significant temporal characteristics that are 

strongly related to the locations [Ye 2011]. For example, the intentions of different users to visit the same 

place may not be the same, so the time of day of their visits may also vary widely. 

 

 
Figure 1: Sample of GPS trajectories 

 

To mine the movement similarity of users efficiently, in this paper, first we introduced an efficient GPS trajectory 

partition method [Yuan et al. 2014] to trim the sequential GPS data into line segments, taking the key end points as 

the characteristic points for clustering (See Figure 2(a)). Based on these points, we could map all the trajectories onto 

a series of abstract trip routes. Next, by taking each of the clusters as a fixed territory (location), a user’s trajectory 

reflected his visits to a certain series of geographic locations. Such a “user-visiting-location” relationship may be 

represented as a user-location matrix (see Figure 2(b)). Finally, taking temporal effects into consideration, we 

proposed a novel low-rank matrix factorization based method to solve the problem of mining users’ similar 

movements. 

 

 
(a) Trajectories partition and endpoints clustering.        (b) User-Location matrix. 

Figure 2: Method for constructing user-location correlation 

 

TR 1 

GPS point 

Road side 

TR 3 TR 2 

user 1 
user 2 

user 3 

user 2 

TR 4 

Meaningless roaming 

TR 1 

C 2 

C 1 

C 3 

TR 3 TR 2 

user 1 
user 2 

user 3 

TR 4 

Characteristic points for C 

user 2 



Journal of Electronic Commerce Research, VOL 18, NO 4, 2017 

 Page 305 

The remainder of this paper is organized as follows. Section 2 summarizes significant related work. Section 3 

details the novel methods for trajectory partition and fixed territory clustering. Section 4 presents the procedure for 

mining users’ movement similarity with temporal effects. Section 5 shows the experimental results, while Section 6 

presents conclusions based on our work. 

 

2. Related Work 

2.1. Trajectory information mining 

Generally, GPS trajectory data are recorded with very high frequency that provides notably fine-grained 

information about a movement. However, this capability is also the main reason for data sparsity. Therefore, earlier 

research in this area attempted to mine path information in a manner that would avoid the data sparsity problem at 

least partially. Jeung et al. [2008] considered the idea of convoys in trajectory databases, and formalized the concept 

of a convoy query with density based notions. Han et al. [2012] argued that density and Euclidean distance were no 

longer effective measures of the utility of spatial clustering of mobile object trajectories. Instead, they proposed a road 

network-aware approach for fast and effective clustering of spatial trajectories. Sung et al. [2012] presented a 

clustering method to extract motion patterns from historical data, and used the patterns to generate interception paths. 

Trajectory pattern mining, introduced in [Giannotti et al. 2007], has been another important area of research. A 

trajectory pattern represents a set of individual trajectories that share the property of visiting the same sequence of 

places with similar travel times. Following this approach, some important efforts were devoted to mining travel 

sequences [Monreale et al. 2009]. Since trajectory data contains many points with only a small amount of useful 

information, partitioning the raw trajectory into segments (sub-trajectories), and finding a representative line for each 

segment, are two feasible methods that help extract significant information, such as characteristic points. Lee et al. 

[2008] proposed a TraClass method for trajectory data that generated a hierarchy of features by partitioning trajectories 

and exploring region-based and trajectory-based clustering. Cao et al. [2005] defined the pattern elements as spatial 

regions around frequent line segments, and the patterns were detected using a substring tree structure. In [Lee et al. 

2007], the researchers proposed a partition-and-group framework for clustering trajectories that partitioned a trajectory 

into a set of line segments. Then they grouped similar line segments together into a cluster. However, this approach 

suffered from the difficulty of defining the similarity metric for line segments [Sung et al. 2012], which led to 

complexity in both the mathematical analysis and numerical calculation. To address this problem, Yuan et al. [2014] 

presented a novel trajectory partition method. The primary advantage of this method was the low computational cost 

for finding characteristic points from massive trajectories. 

2.2. User Movement Similarity Mining 

With continuing increased available of personal mobile information, researchers focused extensively on 

individual location history as represented by GPS trajectories. This range of work included detecting individual 

locations [Ashbrook and Starner 2003; Hariharan and Toyama 2004], recognizing user-specific activities at each 

location [Patterson et al. 2003; Pao et al. 2012] to analyze location correlations [Zheng and Xie 2010], and predicting 

users’ movements among these locations [Ashbrook and Starner 2003]. Ultimately, all these research efforts aimed to 

provide better travel recommendations, a goal that promoted interest in mining data about similar users based on their 

movements. 

To measure user similarity in geographic environments, most of the work in the literature adopted the basic idea 

of analyzing the movement regularities of mobile users. Zheng et al. [2011] proposed a system for measuring user 

similarity that first extracted stay points from trajectories and then organized them as a hierarchical framework. 

Similarity between users was calculated based on the retrieved moving sequences. Lu et al. [2011] proposed a method 

named LBSAlignment to measure the movement similarity of two mobile users by analyzing the longest common 

sequence. Thakur et al. [2010] modeled users’ visiting histories for various locations with a user-location matrix. The 

eigen vectors of the matrix were used to measure the similarity of motion of these mobile users. Lin and Su [2008] 

proposed a simple way to compare spatial shapes of moving object trajectories by introducing a new distance function 

based on “one way distance” (OWD). Yuan and Raubal [2014] contributed to this research area by developing the 

Spatio-temporal Edit Distance measure, an extended algorithm to determine the similarity between user trajectories 

based on detailed call records. 

Since data sparsity is a main challenge for these methods, some recent work tried to make use of more geo-social 

information to measure user similarity at the semantic level [Botzenhardt et al. 2016]. Along this line, Lee and Chung 

[2011] proposed a method to calculate mobile user similarity using the semantics of the locations they visited, in 

which, the location semantics were constructed by leveraging social network services. However, Wu et al. [2015] 

modeled semantic trajectories based on road networks and proposed a Constrained Time-based Common Parts (CTCP) 

approach to measure the similarity. Ying et al. [2010] proposed a method of MSTP-Similarity to evaluate similarity 

among users based on their maximal semantic trajectory patterns. In their work, the semantics of the trajectories were 
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transformed by using a geographic information database. In [Lv et al. 2013], they addressed the problem of mining 

users’ long-term activity similarity based on their trajectories. To that end, they first noted the routine activity from 

users’ daily trajectories. Then user similarity was calculated hierarchically based on the extracted routine activities. 

As we have seen, to measure the movement similarity of users, all the above approaches relied too much on 

individuals’ geographic overlapping. Moreover, the temporal information was ignored. 

 

3. Trajectory Partitioning and Characteristic Points Clustering 

3.1. Trajectory Partitioning 

Let gj denote the j-th GPS point. Then a series of time-ordered GPS points is given as 

 

 TR = {g1, g2, ..., gj, gj+1, ..., gn}  (1) 

 

which represents a trajectory TR consisting of n GPS points, implying the movement of an object from g1 to gn via 

GPS points g2,...,gn−1. As suggested in [Lee et al. 2007; Yuan et al. 2014], partitioning a trajectory TR into a set of 

stationary sub-trajectories (SSTs) is a feasible way to discover characteristic points. The two end-points of each SST 

can be collected as two characteristic points of TR because the movement of an object in an SST is relatively stable. 

In other words, an SST can be as a direct path (i.e., a line segment) between its two end-points. 

Given a data set of N trajectories, using the method presented in [Yuan et al. 2014], we can partition each 𝑇𝑅𝑖 =
{𝑔1𝑖

, … , 𝑔𝑛𝑖
} (i = 1,...,N) into mi SSTs as shown in Table 1. SST(x, y) means the SST has two GPS data points, x and y, 

as its end-points. The adjacent two SSTs may have one common end-point. 

 

Table 1: Partition TRi into SSTs 

TRi SST 

1 𝑆𝑆𝑇 (𝑔11
, 𝑔𝑐11

) , … , 𝑆𝑆𝑇 (𝑔𝑐1(𝑚1−1)
, 𝑔𝑛1

)  

... 

i 
𝑆𝑆𝑇 (𝑔1𝑖

, 𝑔𝑐𝑖1
) , … , 𝑆𝑆𝑇 (𝑔𝑐𝑖(𝑚𝑖−1)

, 𝑔𝑛𝑖
) 

... 

N 
𝑆𝑆𝑇 (𝑔1𝑁

, 𝑔𝑐𝑁1
) , … , 𝑆𝑆𝑇 (𝑔𝑐𝑁(𝑚𝑁−1)

, 𝑔𝑛𝑁
) 

 

As a result, we can obtain further a set of characteristic points as CP(TRi) from each trajectory of TRi (Table 2). 

 

Table 2: Characteristic points of trajectories. 

TRi CP(TRi) 

1 

… 

i 

… 

N 

𝑔11
− 𝑔𝑐11

− ⋯ − 𝑔𝑐1(𝑚1−1)
− 𝑔𝑛1

 

𝑔1𝑖
− 𝑔𝑐𝑖1

− ⋯ − 𝑔𝑐𝑖(𝑚𝑖−1)
− 𝑔𝑛𝑖

 

𝑔1𝑁
− 𝑔𝑐𝑁1

− ⋯ − 𝑔𝑐𝑁(𝑚𝑁−1)
− 𝑔𝑛𝑁

 

 

As we can see, it would be simpler and easier to extract key information from a group of SSTs than from the 

trajectories directly. The significant effect of an SST is that it removes the noise points while retaining the key GPS 

points for identifying characteristic points, providing great convenience in dealing with the geographical relationship 

between GPS points. 

3.2. Characteristic Points Clustering 

The information contained in each end-point is still very limited, because different users would generate very 

different characteristic points even if they walked on the same path. 

In the following Algorithm 1, we introduce the general k-means method to cluster the characteristic points into l 

clusters, i.e., C1,...,Cl, based on their geographic closeness. 
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——————————————————————————————————————————————  

Algorithm 1 Cluster the Characteristic Points 

——————————————————————————————————————————————  

1: Input: TR = ⋃ 𝑇𝑅𝑖
𝑁
𝑖=1 ; 

2: Output: Cluster results C; 

3: for i = 1 to N do 

4:        Partition TRi into SSTs; 

5:        Collect end-points of SSTs to generate the set of CP(TRi); 

6: end for 

7: Cluster the points in ⋃ 𝐶𝑃(𝑇𝑅𝑖)
𝑁
𝑖=1  into l clusters: C1,...,Cl; 

8: return C = ⋃ 𝑐𝑘
𝑙
𝑘=1 . 

——————————————————————————————————————————————  

Gathering the geographically adjacent characteristic points together, the clustered point can be assumed to 

represent a latent location or POI (point of interest). Algorithm 1 shows the general framework of mining the clusters 

of characteristic points in a given GPS trajectory data set. First, each of the GPS trajectories is partitioned into 

segments to obtain its characteristic points (Lines 3-6). Then, all the characteristic points are clustered into l groups 

C1,...,Cl (Line 7). 

 
Figure 3: Characteristic points clustering 

 

Figure 3 shows the characteristic points of six trajectories (TR1,...,TR6) clustered into four groups: C1, C2, C3 and 

C4. 

 

4. Mining User Movement Similarity with Temporal Effect 

4.1. User-location Matrix 

In order to study the movement similarity of users, we need to make clear the location-visiting similarity at each 

movement (represented by a GPS trajectory) of all the users. 

We use m to denote the number of observed users, and l to denote the number of clustered locations generated by 

Algorithm 1. Let u = {u1,u2,...,um} be the set of users, and c = {c1,c2,...,cl} be the set of visited locations, respectively. 

𝑋 ∈ ℝ+
𝑚×𝑙 is a user-location matrix with each element Xij representing the number of visits made by user ui at location 

cj. The following Algorithm 2 shows the generation of Xij. 

4.2. Research Problem 

Let 𝑈 ∈ ℝ+
𝑚×𝑑  be the user check-in preferences for all the locations, and let 𝐶 ∈ ℝ+

𝑙×𝑑  be the location 

characteristics, where d ≪ min(m, n) denotes the number of latent preference factors of users. 
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—————————————————————————————————————————————— 

Algorithm 2 Generate the User-location Matrix 

—————————————————————————————————————————————— 

1: Input: CP = ⋃ 𝐶𝑃(𝑇𝑅𝑖)
𝑁
𝑖=1 ; 𝑐 = ⋃ 𝑐𝑘

𝑙
𝑘=1 . 

2: Output: X; 

3: X = 0; 

4: for i = 1 to N do 

5: Seek out the provider index, i.e., us, of TRi; 

6: for j = 1 to |CP(TRi)| do 

7: Obtain the j-th characteristic point gcj in CP(TRi); 

8: if gcj ∈ ck then 

9: Xsk = Xsk + 1; 

10: end if 

11: end for 

12: end for  

13: return X. 

—————————————————————————————————————————————— 

With the notations introduced above, we then define the problem of mining user movement similarity as a co-

cluster problem using a constrained nonnegative matrix factorization: 

 

     𝑚𝑖𝑛𝑈,𝐶≥0‖𝑋 − 𝑈𝐶𝑇‖𝐹
2 ,     (2) 

 

where the operational symbol ∥·∥ denotes the Frobenuis norm of a matrix. By solving the above optimization problem, 

the result can be used to approximate the check-in preference of ui on an unvisited location cj. Basically, this result 

can be useful for studying the movement similarity of users based on their location preference. 

4.3. Temporal Effect Based Regularization 

Human geographical movement exhibits significant temporal patterns, and is highly relevant to the location 

property. Thus, investigating the temporal features embedded in daily patterns provides an opportunity for us to 

improve our understanding of human mobile behavior. 

To model the correlation of users’ movements with temporal effects, we constructed a user-user similarity graph 

in which the graph nodes represent users, and the edges represent the affinity between the movements of users with 

temporal effect. The adjacency matrix 𝑊𝑢 ∈ ℝ+
𝑚×𝑚 of the graph is defined as in [Hu et al. 2013]: 

 

    𝑊𝑖𝑗
𝑈 = {

1  𝑖𝑓 𝑢𝑗 ∈ 𝒩(𝑢𝑖) 𝑜𝑟 𝑢𝑖 ∈ 𝒩(𝑢𝑗)

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  
    (3) 

 

where 𝒩(ui) denotes the k-nearest neighbors (KNN) of node ui. 

In order to adopt the KNN method, we proposed the following measurement to evaluate the intensity of users’ 

movement similarity with the constraint of temporal effect. First, in a time interval of [0, T], a user’s visiting history 

for all the locations can be distributed as a “time-location” matrix, i.e., XTL. Therefore, given two users 𝑢𝑖 , 𝑢𝑗 ∈ 𝑢, if 

they have visited the same locations at the same (or similar) times with high frequency, then their affinity will be high. 

Based on this assumption, we used the following method to measure the similarity between two users ui and uj: 

    𝑠𝑖𝑚(𝑢𝑖, 𝑢𝑗) = 𝑒

−
‖𝑋𝑇𝐿

𝑖 −𝑋𝑇𝐿
𝑗

‖
𝐹

2

‖𝑋𝑇𝐿
𝑖 ‖

𝐹

2
‖𝑋𝑇𝐿

𝑗
‖

𝐹

2

     (4) 

The key idea is that, if two users are close in the graph, their movement affinity is also close. This result can be 

achieved by minimizing the following loss function: 

 

min 𝑡𝑟(𝑈𝑇𝐿𝑢𝑈)        (5) 

 

where tr(·) denotes the trace of a matrix. 𝐿𝑢 = 𝐷𝑢 − 𝑊𝑢 is the Laplacian matrix of the user-user similarity graph and 

the diagonal matrix Du is the degree matrix of Wu, i.e., 𝑑𝑖
𝑢 = ∑ 𝑊𝑖𝑗

𝑢
𝑗 . 

By approximating the visiting activities for each temporal state 𝑡 ∈ [0, 𝑇] and minimizing their aggregation, the 

time-dependent user visiting preferences can be obtained by solving the following optimization problem: 
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   𝑚𝑖𝑛𝑈,𝐶≥0‖𝑋 − 𝑈𝐶𝑇‖𝐹
2 + 𝜆𝑡𝑟(𝑈𝑇𝐿𝑢𝑈) + 𝛼‖𝑈‖𝐹

2 + 𝛽‖𝐶‖𝐹
2 ,   (6) 

 

where λ is a parameter to control the temporal regulation. 

However, the optimization problem in relation (6) is not convex with respect to all the two variables of U and C, 

i.e., there is no closed-form solution for the problem. Next, we introduced an iterative update algorithm to solve the 

optimization problem based on the work in [Ding et al. 2006]. 

4.4. Learning Algorithm 

Let Λu and Λc be the Lagrange multiplier for constraint U ≥ 0 and C ≥ 0 respectively. Then the Lagrange function 

L is defined as follows: 

 

𝐿 = 𝑡𝑟[(𝑋 − 𝑈𝐶𝑇)𝑇(𝑋 − 𝑈𝐶𝑇)] + 𝜆𝑡𝑟(𝑈𝑇𝐿𝑢𝑈) + 𝛼𝑡𝑟(𝑈𝑇𝑈) + 𝛽𝑡𝑟(𝐶𝑇𝐶) − 𝑡𝑟(Λ𝑢𝑈𝑇) − 𝑡𝑟(Λ𝑐𝐶𝑇) (7) 
By setting the derivatives ∇𝑈𝐿 =  0 and ∇𝐶𝐿 =  0, we get the following: 

    Λ𝑢 = −2𝑋𝐶 + 2𝑈𝐶𝑇𝐶 + 2𝜆(𝐷𝑢 − 𝑊𝑢)𝑈 + 2𝛼𝑈   (8) 

    Λ𝑐 = −2𝑋𝑈𝑇 + 2𝐶𝑈𝑇𝑈 + 2𝛽𝐶     (9) 

 

The Karush-Kuhn-Tucker complementary condition [Boyd and Vandenberghe 2004] for the non-negativity 

constraint of Λu and Λc gives Λ𝑢(𝑖, 𝑗)𝑈(𝑖, 𝑗) = 0 and Λ𝑢(𝑖, 𝑗)𝐶(𝑖, 𝑗) = 0. Thus, we can obtain the updating rules for 

U and C as follows: 

    𝑈(𝑖, 𝑗) ← 𝑈(𝑖, 𝑗)√
[𝑋𝐶+𝜆𝑊𝑢𝑈](𝑖,𝑗)

[2𝑈𝐶𝑇𝐶+𝜆𝐷𝑢𝑈+𝛼𝑈](𝑖,𝑗)
;    (10) 

  𝐶(𝑖, 𝑗) ← 𝐶(𝑖, 𝑗)√
[𝑋𝑇𝑈](𝑖,𝑗)

[𝐶𝑈𝑇𝑈+𝛽𝐶](𝑖,𝑗)
.     (11) 

In summary, we present the following Algorithm 3 for solving the optimization problem of (6). 

—————————————————————————————————————————————— 

Algorithm 3 Explore users having similar movements with temporal effect. 

—————————————————————————————————————————————— 

1: Input: user-location matrix X; ⋃ 𝑋𝑇𝐿
𝑖𝑛

𝑖=1 ; parameter 𝜆, 𝛼, 𝛽; 

2: Output: user cluster results U; 

3: Construct matrix Lu in relation (5); 

4: Initialize U,C ≥ 0; 

5: while Not convergent do 

6: Update U(i,j) according to relation (10); 

7: Update C(i,j) according to relation (11); 

8: end while 

9: return U. 

—————————————————————————————————————————————— 

In the above computational algorithm, initialization for the matrices and Laplacian matrix can be inferred from 

lines 3-4. The two matrices are updated with their respective updating rules (lines 5-8), and the iterative process would 

be stopped if the value of these matrices converged, or if the number of iterations exceeded a given threshold. 

 

5. Experiments 
5.1. Experiment Setup 

In this section, we evaluated the performance of our proposed framework for mining users’ movement similarity 

from massive GPS trajectories. In particular, we evaluated ability to: (1) mine characteristic points from GPS data, 

and (2) identify users’ movement similarity with temporal effects. Before we delve into the details of the experiments, 

first we will describe the dataset used in this paper. 

5.1.1. Data Set 

We tested our method using the BJ data set, a real GPS trajectory dataset collected by the Geolife project 

conducted by Microsoft Research Asia in Beijing1. This data set was generated by 182 users in a period of over three 

years (from April, 2007, to August, 2012). It contains 17,621 trajectories with a total distance of about 1.2 million 

kilometers and a total duration of 48,000+ hours. All the trajectories are logged in a dense representation, e.g., every 

5 seconds or every 20 meters per point. In the following work, 706 trajectories were chosen randomly for the 

experiments. 

                                                 
1 http://research.microsoft.com/en-us/projects/urbancomputing/. 
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Note that the original GPS data adopted the WGS-84 coordinate system. In our experiments, all the GPS point 

values were translated into Beijing-54 coordinates to facilitate the computation of Euclidean distance. Since the city 

of Beijing is a relatively small area compared to the size of the Earth’s surface, we regarded the translation error for 

each GPS data point to be negligible. 

5.1.2. GPS Data Preprocessing 

Obviously, in a massive data environment, a fast and accurate SST partitioning method is important for studying 

GPS trajectories. As mentioned previously in this paper, Yuan et al. [2014] presented a novel trajectory partition 

method to obtain the stationary sub-trajectory (SST) from massive trajectory data. The primary advantage of the 

method was the low computational cost, and the fact that it could be used to partition any number of trajectories with 

different forms of start movement (start position, speed, direction, and so on). In our research, we conducted a set of 

experiments to exhibit the advantages of Yuan’s work (denoted by Yuan) on GPS data preprocessing. This step was 

very important because the common trajectories collected by devices are non-uniform and sparse. 

The experimental results of the efficiency of this method are shown in Table 3, which exhibits the following: 

(1) The efficiency of the selected method was about 10 times faster than that of the method presented by Lee et 

al. (denoted by Lee). 

(2) The computation became faster with the increasing value of d0. 

(3) The curves in Figure 4 were almost straight lines, providing experimental evidence that both methods have 

computation complexity of O(n), where n is the number of GPS points in a trajectory. 

 

Table 3: Time consumption for the trajectory partition methods (d0=1). 

TR length (n) Yuan Lee Ratio 

10 0.0013495 0.0049614 3.67 

100 0.005776 0.0637 11.02 

300 0.013291 0.17376 13.07 

600 0.027756 0.38121 13.73 

1000 0.063317 0.61054 9.64 

 

Changing the value of the parameter d0, the comparative results of algorithm efficiency are shown in Figure 4. 

As we can see, when the value of d0 changed to a bigger value, the Yuan’s method still had a very high computational 

efficiency. Moreover, in the experiments, the average number of iterations for partitioning the trajectories in the BJ 

data set was 3. The minimum number of iterations was about 1 when the GPS trajectory was generated in a direct path 

(very low position disturbance), whereas the maximum was about 8 for some irregular trajectories (high position 

disturbance) that contained more than 20,000 GPS points. 

 

 
Figure 4: Comparison of Efficiency 

 

In addition, Lee et al. [2007] presented two measurements of preciseness and conciseness to evaluate the optimal 

partitioning of a trajectory. Preciseness means that the difference between a trajectory and a set of its trajectory 

partitions should be as small as possible. Conciseness means that the number of trajectory partitions should be as small 

as possible. Obviously, the method presented by Yuan et al. [2014] has a very high performance on conciseness, 
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especially when d0 is big. Thus, our other experiment in data preprocessing concerned the preciseness of the trajectory 

partition method. In Figure 5, the black dashed line represents the base line of raw trajectory, which keeps the 

information of all the GPS points in a trajectory. The pink line illustrates the number of characteristic points generated 

by the method presented by Lee et al. [2007], while the blue line shows the number of characteristic points generated 

by the approach provided by Yuan et al. [2014]. The red line represents the number of characteristic points found by 

these two methods commonly. The experimental results showed clearly: 

(1) The preciseness of both methods decreased with the increase of trajectory length, n. The method presented 

by Lee et al. [2007] had an advantage in preciseness because it kept more GPS points as characteristic points. 

(2) With respect to the base line, the preciseness of the method presented by Yuan et al. [2014] was acceptable. 

If we wanted more conciseness, then a relative smaller value of d0 would be needed. 

 

Figure 5: Comparison of Preciseness 

 

In summary, these results demonstrated that the method presented by Yuan et al [2014] had an advantage in 

computing speed, which became more significant when we were faced with a large amount of GPS data. In contrast, 

the method presented by Lee et al. [2007] kept more preciseness (information) about the raw trajectory. 

5.2. Characteristic Points Clustering 

In this experiment, we first clustered the characteristic points into groups (d0=100), and then we generated a 

spatial map of users’ typical motions with the trajectory coverage relation between groups, i.e., fixed territories. 

5.2.1. Clustering Characteristic Points into Groups 

In the clustering process, an important challenge was to set an appropriate number of clusters. For example, using 

too few clusters would result in a large number of merged network nodes. Some characteristic points in these 

trajectories were presented by a single node because of their relatively shorter trajectory length. Therefore, much 

useful geographic information would be concealed (See Figures 6(a) and 6(b)). In contrast, use of a large number of 

clusters would result in lack of discrimination between clusters. For instance, some clusters in Figure 6(d) are crowded, 

so it is difficult to distinguish them from each other. 
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Figure 6: Cluster number and geographical 

information 

 

Since clustering is the task of grouping a set of objects so that objects in the same group are more similar to each 

other than to objects in other groups, we introduced the following exploratory method to cluster the end-points into 

groups: 

(1) First, we clustered the characteristic points into 2 to k groups respectively. 

(2) Then, we calculated the average distance between clusters. 

(3) Finally, we chose the clustering results that had both bigger cluster distances and larger cluster numbers as 

the most suitable for the studied trajectories. 

Considering the instability of clustering methods, we used the averaged results after repeating the calculation 10 

times. Figure 7 reflects the impact of the cluster number on clustering results for some sample trajectories in the BJ 

data set. 

Figure 7: Impact of the cluster number on clustering results 
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5.2.2. Mapping Trajectory onto Locations 

Following on the steps described above, we now had the original trajectories provided by users, along with some 

clusters of characteristic points that could be deemed as latent locations. To study the users’ movements, we needed 

to explore the correlations between each of the user-generated trajectories and the locations. 

Based on the clustering results, if a characteristic point gij of a trajectory TRi belonged to a cluster cj, then we said 

that the location represented by cj had been covered by TRi. Obviously, we can map a trajectory onto a series of 

sequential locations. Assuming a user’s movement from one location to another is a path (or sub-path), we could 

construct a path network for all the trajectories. Figure 8 demonstrates a local path network generated by the sample 

trajectories. It is an abstract map of the typical movements for a group of users. 

 

Figure 8: Path networks for the characteristic points. 

 

Importantly, following this approach, we could establish two key relationships: “user ui-providing-trajectory TRi” 

and “trajectory TRi-covering-location cj.” As such, we obtained the final information about “ui-visiting-location cj” 

which contained valuable information about the correlation of travel movements among fixed territories. In turn, this 

information could can be transformed easily into a “user-location” matrix. This step was necessary for studying the 

users’ movement similarity and detecting frequent paths in an area for better personalized recommendations. 

5.3. Mining User Movement Similarity with Temporal Effects 

In this portion of our research, we compared the performance of our method (NMF) with the classic K-means 

model. To this end, five groups of users with similar movement were annotated manually as ground truth. For each 

group, we defined an area (a subset of the 100 locations) that the group members visited frequently at almost same 

time, so that users in the same group would have the same or similar characteristics in terms of their daily movements. 

Purity was selected to assess the performance of the proposed methods. Following [Hu et al. 2013], purity was 

calculated as the weighted sum of individual cluster purity values, as shown: 

 

     𝑝𝑢𝑟𝑖𝑡𝑦 =
1

𝑛
∑ 𝑚𝑎𝑥𝑗|𝐶𝑗 ∩ 𝑙𝑗|𝑘

𝑖=1      (12) 

 

where {l1,...,lj,...} is the ground truth, k is the number of clusters and n is the total number of points. Purity measures 

the extent to which each cluster contains data points from one class, so the higher the purity, the better the clustering 

result. 

For general experimental purposes, a total of 950 users (150 labeled manually) were selected to compare the 

similarity of their trajectories at 10, 20, and 30 days, respectively. The parameters of 𝜆, 𝛼, and β in matrix factorization 

were set empirically as λ = α = β = 1. In addition, parameter K = 20 for the K-nearest neighbor method was defined as 

in equation (3) and the number of clusters for the k-means method was set at 10. The experiments for each method 

were repeated 5 times, with the results as follows: 
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Table 4: Comparison of purity. 

 

 

 

 

Figure 9: The averaged purity 

 

The average performance of NMF and k-means is shown in Figure 9. When the GPS data covered only 10 days 

of users’ movements, we can see that k-means demonstrated relatively better efficiency. This finding may have 

resulted because the similarity relationship of users (visiting locations at each time interval) in NMF had not been 

established effectively. However, as the time (number of days) in the experiment increased, NMF gradually showed 

a greater advantage for mining the data of users’ movement similarity with consideration of temporal components. 

 

6. Conclusion 
In this work, we attempted to mine users’ movement similarity by leveraging their GPS trajectory data. However, 

the user-location-time relationship was very sparse in raw GPS data. To address this problem, we proposed a novel 

method by combining together GPS data sequence partitioning and matrix factorization to achieve the objectives. 

First, we introduced an efficient trajectory partitioning method to trim the sequential GPS data into line segments. 

Next, taking these end-points as the characteristic points, we used a clustering algorithm to deduce the fixed territories 

(locations) information covered by the trajectories. This method made use of SST trajectory partitioning and clustering 

of characteristic points to eliminate the data sparsity caused by the raw GPS data, so that the correlation between 

trajectories could be studied efficiently. More importantly, we constructed a “user-location” matrix (the elements in 

the matrix implied “which user accessed what location”) to represent the users’ preferences in terms of visited 

locations. 

Second, we leveraged the timestamp information associated with each GPS point to extend the initial “user-

location” relationship to the “which user at what time visiting what location.” As a result, the spatio-temporal profile 

of each user could be built. Next, we put the work of mining users’ movement similarity into an equivalent task of 

clustering the users into groups based on their location visiting history and temporal characteristics. The clustering 

process was realized by a new proposed matrix factorization model. The experimental results showed that users with 

similar movement could be discriminated on the basis of our method, and thus demonstrated the effectiveness of our 

approach. 

The methods proposed in this work are efficient for mining information hidden in the trajectory data, especially 

the frequent paths, fixed territories, and movement intentions. This information can prove valuable for the 

Experiment 
NMF k-means 

Day=10 Day=20 Day=30 Day=10 Day=20 Day=30 

1 0.3485 0.4862 0.6810 0.5076 0.2936 0.4310 

2 0.3309 0.3910 0.4488 0.4245 0.3609 0.3622 

3 0.4159 0.4504 0.5439 0.5664 0.3741 0.3596 

4 0.3223 0.5338 0.6260 0.4050 0.2556 0.3496 

5 0.2800 0.4621 0.5424 0.2880 0.4318 0.4492 
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development of location-based social network recommendations and human mobility prediction. In turn, this approach 

can provide businesses with opportunities for geographic information services. 
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